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Abstract. Analysis of irreversibility in flow by a stretchable surface has gained much consideration in recent
years. Entropy optimization properly computes the second law thermodynamic irreversibilities. Therefore,
deterioration of entropy proficiency results in a more useful energy transport process. In this article, a
physical aspect of irreversibility in radiative flow of viscous material with quartic autocatalysis chemical
reaction is addressed. The flow is discussed between two stretchable rotating disks. Heat transfer occurring
in this physical problem is modelled through thermal radiation, Joule heating and viscous dissipation.
This is the first time the concept of homogeneous-heterogeneous reactions has been studied with entropy
generation. The nonlinear flow expressions are made dimensionless. The obtained equations are then tackled
through the homotopy concept. The analysis discloses that the radiation parameter and Eckert number
play a vital role in the enhancement of temperature field. The tangential velocity decreases versus the
magnetic parameter. The radial component of velocity boosts close to lower disks and it decreases near
the upper disks versus the Reynolds number. The variations in the Nusselt number and skin friction are
presented graphically with various emerging variables. It is noticed that entropy rate can be controlled by
minimizing the impact of Brinkman and Reynolds numbers.

1 Introduction

The flow by a stretchable rotating disk has gained much consideration from investigators. It is because of its con-
siderable applications in mechanical and industrial engineering processes like medical equipment, manufacturing,
spin coating, centrifugal pumps, food processing technology, pumping of liquid metals versus high melting point, air
cleaning machine, turbo-machinery, gas turbines, electric generating systems, etc. Keeping such motivation in mind,
Karman [1] initially investigated the flow behavior by a rotating disk. Hayat et al. [2] explored irreversibility aspects
in MHD radiative flow by a rotating disk via Joule heating and dissipations. Dissipative flow of second grade fluid is
scrutinized by Hayat et al. [3]. Mustafa [4] analyzed MHD partial slip flow of nanomaterials by a rotating disk. Wu
et al. [5] analyzed the two-phase air liquid flow through a rotating disk system with flow pattern maps. Hassan et
al. [6] examined the mixed convective flow of ferroliquid with iron nanomaterials due to a rotating stretchable disk.
Mehmood et al. [7] worked for MHD flow subject to a rotating disk. A comparative study of five different shape
nanomaterials in rotating disk flow with velocity slip and Joule heating was discussed by Sumaira et al. [8]. Xun et
al. [9] highlighted the heat transport in flow of Ostwald-de Waele liquid with index decreasing over a rotating disk.
Lok et al. [10] considered axisymmetric stagnation point rotational flow by a permeable rotating disk. Some latest
findings regarding this direction are listed in refs. [11–15].

The entropy optimization in recent years has been taken into consideration by many engineers and scientists
to achieve the optimal design of thermal devices. In numerous heat transport mechanisms, a heat exchanger from
higher to lower is the conventional heat transport tool. Thermal properties are improved through active and passive

a e-mail: mikhan@math.qau.edu.pk
b e-mail: mk42@hw.ac.uk (corresponding author)



Page 2 of 24 Eur. Phys. J. Plus (2019) 134: 172

Fig. 1. Schematic flow diagram.

techniques. Numerous nanomaterials are utilized to enhance the heat transfer [16,17]. Ijaz et al. [18] have discussed
irreversibility associated with flow and heat transport in Sisko nanoliquid by a rotating disk. Manay et al. [19] analyzed
the nanomaterial flow in microchannel heat generation with entropy concept. Entropy generation associated with heat
conduction in a fixed (adiabatic) cylinder was discussed by Tian and Wang [20]. Nanomaterial entropy optimization
with helical twisted tapes was explored by Li et al. [21]. Kefayati et al. [22] studied diffusive double forced convective
flow of Carreau liquid with entropy generation by a cold cylinder. Khan et al. [23] highlighted the entropy generation
in tangent hyperbolic nanomaterial via nonlinear mixed convection and activation energy. Sadaf et al. [24] scrutinized
the entropy generation in peristalsis flow with various nanomaterials shapes. Xie and Jian [25] investigated two-layer
MHD electroosmotic flow with entropy generation via microparallel channels. Related investigations regarding entropy
concept are listed in refs. [26–30].

Here entropy generation in radiative flow of viscous material between two rotating disks is addressed. The impacts
of homogeneous-heterogeneous reactions are considered. The energy equation is modelled subject to dissipation, Joule
heating and radiation. Through the implementation of the second law of thermodynamics the total entropy rate is
calculated. The present flow expressions are made dimensionless by suitable transformations. The homotopy analysis
method [31–45] is used to obtain the convergent series solutions. Nusselt numbers and skin friction coefficients at both
upper and lower disks are discussed.

2 Mathematical description

2.1 Flow expression

Flow of viscous material in the presence of entropy generation and radiation is addressed. The flow is studied between
two rotating disks. The lower disk (at z = 0) is rotating with Ω1 in axial direction while the upper disk (at z = h) rotates
with Ω2. Both disks are stretched respectively with stretching rates a1 and a2. The magnetic field is implemented in
the z-direction. The schematic flow description is highlighted in fig. 1. The basic equations of the governing problem
in vector form are

∇ · V = 0, (1)

(V · ∇)ũ = −1
ρ

∂p̃

∂r
+ ν∇2ũ − σ

ρ
B2

0 ũ, (2)

(V · ∇)ṽ = ν∇2ṽ − σ

ρ
B2

0 ṽ, (3)

(V · ∇)w̃ = −1
ρ

∂p̃

∂z
+ ν∇2w̃. (4)
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The flow equations are presented as [14]

∂ũ

∂r
+

ũ

r
+

∂w̃

∂z
= 0, (5)

ũ
∂ũ

∂r
+ w̃

∂ũ

∂z
− ṽ2

r
= −1

ρ

∂p̃

∂r
+ ν

(
∂2ũ

∂r2
+

1
r

∂ũ

∂r
+

∂2ũ

∂z2
− ũ

r2

)
− σ

ρ
B2

0 ũ, (6)

ũ
∂ṽ

∂r
+ w̃

∂ṽ

∂z
+

ũṽ

r
= ν

(
∂2ṽ

∂r2
+

1
r

∂ṽ

∂r
+

∂2ṽ

∂z2
− ṽ

r2

)
− σ

ρ
B2

0 ṽ, (7)

w̃
∂w̃

∂r
+ ũ

∂w̃

∂r
= −1

ρ

∂p̃

∂z
+ ν

(
∂2w̃

∂r2
+

1
r

∂w̃

∂r
+

∂2w̃

∂z2

)
, (8)

with the boundary conditions [39]

ũ = ra1, ṽ = rΩ1, w̃ = 0 at z = 0,

ũ = ra2, ṽ = rΩ2, at z = h. (9)

In the above expressions, the velocity components are denoted by ũ, ṽ, w̃ and r, θ, z are the Cartesian coordinates, ρ
denotes the density, p̃ represents the pressure, ν denotes the kinematic viscosity, σ represents the electrical conductivity,
B0 and h indicate the distance between two disks.

Considering the following transformations,

û = rΩ1f̂
′(ξ), ṽ = rΩ1ĝ(ξ), w̃ = −2hΩ1f̂(ξ), p̃ = ρfΩ1ν

(
P̂ (ξ) +

1
2

r2

h2
ε

)
, (10)

the flow expressions take the following form:

f̂ ′′′ + Re
(
2f̂ f̂ ′′ − f̂ ′2 + ĝ2 − Mf̂ ′

)
− ε = 0, (11)

ĝ′′ + Re
(
2f̂ ĝ′ − 2f̂ ′ĝ − Mĝ

)
= 0, (12)

P̂ ′ = −4Ref̂ f̂ ′ − 2f̂ ′′ (13)

and the boundary conditions

f̂(0) = 0, f̂(1) = 0, f̂ ′(0) = A1, f̂ ′(1) = A2, ĝ(0) = 1, ĝ(1) = Ω, P̂ (0) = 0, (14)

where Re(= Ω1h2

ν ) highlights the Reynolds number, M(= B2
0σ

ρΩ1
) denotes the magnetic parameter, A1(= a1

Ω1
) and

A2(= a2
Ω1

) represents the ratio parameters and ε highlights the constant pressure.
Simplifying eq. (7) and omitting ε, one has

f̂ ′′′′ + Re
(
2f̂ f̂ ′′′ + 2ĝĝ′ − Mf̂ ′′

)
= 0. (15)

From eq. (7), the pressure term is

ε = f̂ ′′′(0) − Re
[
(f̂ ′(0))2 − (ĝ(0))2 + Mf̂ ′(0)

]
. (16)

Integrating eq. (9) w.r.t ξ, one obtains

P̂ = −2
[
Ref̂2 +

(
f̂ ′ − f̂ ′(0)

)]
. (17)

2.2 Energy equation

Mathematically, the energy equation subject to dissipation, thermal radiation and Joule heating is expressed as

(ρcp)

(
ũ

∂T̃

∂r
+ w̃

∂T̃

∂z

)
=

(
k +

16σ◦T̃ 3
2

3k◦

) (
1
r

∂T̃

∂r
+

∂2T̃

∂r2
+

∂2T̃

∂z2

)
+ σB2

0(ũ2 + ṽ2) + μΦ, (18)
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where the mathematical form of (Φ) is defined as

Φ =

[
2

(
∂ũ

∂r

)2

+ 2
ũ2

r2
+ 2

(
∂w̃

∂z

)2

+
(

∂ṽ

∂z

)2

+
(

∂ũ

∂z

)2

+
(

r
∂

∂r

(
ṽ

r

))2
]

. (19)

From eqs. (14) and (15), we get the following expression:

(ρcp)

(
ũ

∂T̃

∂r
+ w̃

∂T̃

∂z

)
=

(
k +

16σ◦T̃ 3
2

3k◦

) (
1
r

∂T̃

∂r
+

∂2T̃

∂r2
+

∂2T̃

∂z2

)
+ σB2

0(ũ2 + ṽ2)

+ μ

[
2

(
∂ũ

∂r

)2

+ 2
ũ2

r2
+ 2

(
∂w̃

∂z

)2

+
(

∂ṽ

∂z

)2

+
(

∂ũ

∂z

)2

+
(

r
∂

∂r

(
ṽ

r

))2
]

, (20)

with
T̃ = T̃1, T̃ = T̃2, (21)

in which T̃1 denotes the temperature at the lower disk, k◦ represents the mean absorption coefficient, cp indicates the
specific heat capacity, T̃2 denotes the temperature atthe upper disk, k represents the thermal conductivity, μ presents
the dynamic viscosity and σ◦ indicates the Stefan Boltzmann constant.

Considering the following transformations for energy equation,

θ̂ =
T̃ − T̃2

T̃1 − T̃2

, (22)

we have from energy equation

1
Pr

(1 + R)θ̂′′ + 2Ref̂ θ̂′ + ReMEc(f̂ ′2 + ĝ2) + 12EcAf̂ ′2 + Ecĝ′2 + Ecf̂ ′′2 = 0, (23)

θ̂(0) = 1, θ̂(1) = 0, (24)

where Pr(= (ρcp)ν
k ) represents the Prandtl number, R(= 16σ◦T̃ 3

2
3kk◦ ) denotes the radiation parameter, Ec(= r2Ω2

1

cp(T̂1−T̂2)
)

represents the Eckert number and A(= h2

r2 ).

2.3 Mass concentration via quartic chemical reaction

The mathematical form of the isothermal chemical reaction is defined as

A + 2B → 3B, with reaction rate CR = kcĈ1Ĉ
2
2 , (25)

where species B has a higher concentration at the disk surface. The first-order isothermal heterogeneous reaction is
of the form

A → B with reaction rate CR = ksĈ1, (26)

in which A, B denotes the chemical species, kc, ks the reaction rates and Ĉ1 and Ĉ2 the concentrations. The concen-
tration equation in terms of homogeneous-heterogeneous reactions is defined as

ũ
∂C̃1

∂r
+ ŵ

∂C̃1

∂z
= DC1

(
∂2C̃1

∂r2
+

1
r

∂C̃1

∂r
+

∂2C̃1

∂z2

)
− kcC̃1C̃

2
2 , (27)

û
∂C̃2

∂r
+ ŵ

∂C̃2

∂z
= DC2

(
∂2C̃2

∂r2
+

1
r

∂C̃2

∂r
+

∂2C̃2

∂z2

)
+ kcC̃1C̃

2
2 , (28)

with appropriate boundary conditions

DC1

∂C̃1

∂z
= ksC̃1, DC2

∂C̃2

∂z
= −ksC̃1 at z = 0,

C̃1 → C̃∞, C̃2 → 0 at z = h. (29)
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Implementing the following transformations,

ϕ̂ =
C̃1

C̃∞
, l̂ =

C̃2

C̃∞
, (30)

we obtain the following expressions:

1
R∗

(
1
Sc

)
ϕ̂′′ + 2f̂ ϕ̂′ − k1ϕ̂l̂2 = 0, (31)

1
R∗

(
δ

Sc

)
l̂′′ + 2f̂ l̂′ + k1ϕ̂l̂2 = 0, (32)

with
ϕ̂′(0) = k2ϕ̂(0), ϕ̂(1) = 1, δl̂′(0) = −k2ϕ̂(0), l̂(1) = 0, (33)

in which Sc(= ν
DC1

) indicates the Schmidt number, k1(=
kcC̃2

∞
Ω1

) denotes the homogeneous reaction parameter, k2(=
ksh
DC1

) represents the heterogeneous reaction parameter and δ(= DC2
DC1

) denotes the diffusion ratio parameter. For
comparable chemical species A and B, we put DC1 = DC2 , i.e., δ = 1. Therefore we have the following relation:

ϕ̂(η) + l̂(η) = 1. (34)

From eqs. (27) and (28) we have

1
R∗

(
1
Sc

)
ϕ̂′′ + 2f̂ ϕ̂′ − k1ϕ̂(1 − ϕ̂)2 = 0, (35)

ϕ̂′(0) = k2ϕ̂(0), ϕ̂(1) = 1. (36)

3 Physical quantities

3.1 Skin friction coefficients

The shear stresses, i.e., (τzr) and (τzθ) at the lower disk are expressed as

τzr = μ
∂ũ

∂z
=

μrΩ1f̂
′′(ξ)

h
, τzθ = μ

∂ṽ

∂z
=

μrΩ1ĝ
′(ξ)

h
. (37)

The total shear stress τw is

τw =
√

τ2
zr + τ2

zθ. (38)

Finally,

Cf1 =
τw|z=0

ρ(rΩ1)2
=

1
Rr

[(
f̂ ′′(0)

)2

+ (ĝ′(0))2
]1/2

,

Cf2 =
τw|z=h

ρ(rΩ1)2
=

1
Rr

[(
f̂ ′′(1)

)2

+ (ĝ′(1))2
]1/2

. (39)

3.2 Nusselt number

At upper and lower disks, it is mathematically defined as

Nux1 =
hqw

k(T̃1 − T̃2)

∣∣∣∣
z=0

, Nux2 =
hqw

k(T̃1 − T̃2)

∣∣∣∣
z=h

, (40)
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where qw for lower and upper disks are

qw|z=0 = −k
∂T̃

∂z
+ qr|z=0 = − (T̃1 − T̃2)

h

(
k +

16σ◦T̃ 3
2

3k◦

)
θ̃′(0),

qw|z=h = −k
∂T̃

∂z
+ qr|z=h = − (T̂1 − T̂2)

h

(
k +

16σ◦T̃ 3
2

3k◦

)
θ̃′(1). (41)

Finally,

Nux1 = −(1 + R)θ̃′(0), Nux2 = −(1 + R)θ̃′(1). (42)

In the above expressions Cf1 denotes the skin friction at the lower disk, Cf2 represents the skin friction at the upper
disk, τzr highlights the shear stress in the radial direction, τzθ denotes the shear stress in the tangential direction, τw

represents the total shear stress, Nux1 indicates the Nusselt at the lower disk, Nux2 highlights the Nusselt number at
the upper disk and Rr(= rΩ1h

ν ) denotes the local Reynolds number.

4 Entropy equation

We have

SG =
k

T̃ 2

[
1 +

16σ∗T̃ 3
2

3kk∗

] ⎡
⎣

(
∂T̃

∂z

)2

+

(
∂T̃

∂r

)2
⎤
⎦ +

σ

T
B2

0

(
ũ2 + ṽ2

)

+
μ

T̃

[
2

(
∂ũ

∂r

)2

+ 2
ũ2

r2
+ 2

(
∂w̃

∂z

)2

+
(

∂ṽ

∂z

)2

+
(

∂ũ

∂z

)2

+
(

r
∂

∂r

(
ṽ

r

))2
]

+
R∗DC1

C̃1

⎡
⎣

(
∂C̃1

∂z

)2

+

(
∂C̃1

∂r

)2
⎤
⎦ +

R∗DC1

T̃

(
∂C̃1

∂r

∂T̃

∂r
+

∂C̃1

∂z

∂T̃

∂z

)

+
R∗DC2

C̃2

⎡
⎣

(
∂C̃2

∂r

)2

+

(
∂C̃2

∂z

)2
⎤
⎦ +

R∗DC2

T̃

(
∂C̃2

∂r

∂T̃

∂r
+

∂C̃2

∂z

∂T̃

∂z

)
. (43)

The dimensionless form is

NG =
(1 + R)α1θ̂

′2

(θ̂(θw − 1) + 1)2
+

BrA

(θ̂(θw − 1) + 1)

(
12f̂ ′2 + A

(
ĝ′2 + f̂ ′′2

))
+

MBr Re

(θ̂(θw − 1) + 1)

(
f̂ ′2 + ĝ2

)

+
ϕ̂′2

α1

(
L1

ϕ̂
+

L2

(1 − ϕ̂)

)
+

θ̂′ϕ̂′

(θ̂(θw − 1) + 1)
(L1 − L2), (44)

where Br(= μγ2Ω2
1

kΔT ) represents the Brinkman number, α1(= ΔT
T2

) denotes the temperature difference parameter, A(=
h2

r2 ) represents the dimensionless parameter, NG(= SGT2h2

kΔT ) highlights the entropy generation rate, L1(=
R∗DC1C∞

k )

denotes the diffusion variable with respect to the homogeneous reaction and L2(=
R∗DC2C∞

k ) indicates the diffusion
variable with respect to the heterogeneous reaction.

The Bejan number is expressed as

Be =
Entropy generation due to heat and mass transfer

Total entropy generation
.
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5 Methodology

5.1 Zero-th–order problems

Initial approximations and auxiliary linear operators are

f̂0(ξ) = A1ξ − 2A1ξ
2 − A2ξ

2 + A1ξ
3 + A2ξ

3,

ĝ0(ξ) = 1 + (Ω − 1)ξ,

θ̂0(ξ) = 1 − ξ,

ϕ̂0(ξ) =
1 + k2ξ

1 + k2
, (45)

Lf̂ = f̂ ′′′′,

Lĝ = ĝ′′,

Lθ̂ = θ̂′′,

Lϕ̂ = ϕ̂′′, (46)

with

Lf̂

[
α∗

1 + α∗
2ξ + α∗

3ξ
2 + α∗

4ξ
3
]

= 0,

Lĝ[α∗
5 + α∗

6ξ] = 0,
Lθ̂ [α∗

7 + α∗
8ξ] = 0,

Lϕ̂ [α∗
9 + α∗

10ξ] = 0, (47)

where α∗
i (i = 1, 2, 3, . . . , 10) are constants.

Let q∗ ∈ [0, 1] be the embedding variable and hf̂ , hĝ, hθ̂ and hϕ̂ the non-zero auxiliary variables then zero-th–order
deformations are

(1 − q∗)Lf̂

[
F̂ (ξ; q∗) − f̂0(ξ)

]
= q∗hf̂Nf̂

[
F̂ (ξ; q∗), Ĝ(ξ; q∗)

]
, (48)

(1 − q∗)Lĝ

[
Ĝ(ξ; q∗) − ĝ0(ξ)

]
= q∗hĝNĝ

[
Ĝ(ξ; q∗), F̂ (ξ; q∗)

]
, (49)

(1 − q∗)Lθ̂

[
ϑ̂(ξ; q∗) − θ̂0(ξ)

]
= q∗hθ̂Nθ̂

[
ϑ̂(ξ; q∗), F̂ (ξ; q∗), Ĝ(ξ; q∗)

]
, (50)

(1 − q∗)Lϕ̂

[
Φ̂(ξ; q∗) − ϕ̂0(ξ)

]
= q∗hϕ̂Nϕ̂

[
Φ̂(ξ; q∗), F̂ (ξ; q∗)

]
, (51)

with the conditions

F̂ (0; q∗) = 0, F̂ (1; q∗) = 0, F̂
′
(0; q∗) = A1, F̂ ′(1; q∗) = A2, (52)

Ĝ(0; q∗) = 1, Ĝ(1; q∗) = Ω, (53)

ϑ̂(0; q∗) = 1, ϑ̂(1; q∗) = 0, (54)

Φ̂′(0; q∗) − k2Φ̂(0; q∗) = 0, Φ̂(1; q∗) = 1. (55)

Nonlinear operator Nf̂ , Nĝ, Nθ̂ and Nϕ̂ are

Nf̂

[
F̂ (ξ; q∗), Ĝ(ξ; q∗), θ̂(ξ; q∗), ϕ̂(ξ; q∗)

]
=

∂4F̂ (ξ; q∗)
∂ξ4

+R

[
2Ĝ(ξ; q∗)

∂ĝ(ξ; q∗)
∂ξ

+2F̂ (ξ; q∗)
∂3F̂ (ξ; q∗)

∂ξ3
−M

∂2F̂ (ξ; q∗)
∂ξ2

]

(56)

Nĝ

[
Ĝ(ξ; q∗), F̂ (ξ; q∗)

]
=

∂2G̃(ξ; q∗)
∂ξ2

+ R

[
2F̂ (ξ; q∗)

∂Ĝ(ξ; q∗)
∂ξ

− 2
∂F̂ (ξ; q∗)

∂ξ
G̃(ξ; q∗) − MG̃(ξ; q∗)

]
(57)
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Nθ̂

[
ϑ̂(η; q∗), F̂ (η; q∗), Ĝ(ξ; q∗)

]
=

1
Pr

(1 + R)
∂2ϑ̂(ξ; q∗)

∂ξ2
+ 2RF̂ (ξ; q∗)

∂ϑ̂(ξ; q∗)
∂ξ

+ MREc

⎛
⎝

(
∂F̂ (ξ; q∗)

∂ξ

)2

+ Ĝ2(ξ; q∗)

⎞
⎠ + 12EcA

(
∂F̂ (ξ; q∗)

∂ξ

)2

+ Ec

(
∂Ĝ(ξ; q∗)

∂ξ

)2

+ Ec

(
∂2F̂ (ξ; q∗)

∂ξ2

)2

, (58)

Nϕ̂

[
Φ̂(ξ; q∗), F̂ (ξ; q∗)

]
=

1
R

1
Sc

∂2Φ̂(ξ; q∗)
∂ξ2

+ 2F̂ (ξ; q∗)
∂Φ̂(ξ; q∗)

∂ξ
− k1Φ̂(ξ; q∗)(1 − Φ̂(ξ; q∗))2. (59)

5.2 m-th–order problems

We have

Lf̃

[
f̂m(ξ) − χmf̂m−1(ξ)

]
= hf̂Rf̂ ,m(ξ), (60)

Lĝ [ĝm(ξ) − χmĝm−1(ξ)] = hĝRĝ,m(ξ), (61)

Lθ̂

[
θ̂m(ξ) − χmθ̂m−1(ξ)

]
= hθ̂Rθ̂,m(ξ), (62)

Lϕ̂ [ϕ̂m(ξ) − χmϕ̂m−1(ξ)] = hϕ̂Rϕ̂,m(ξ), (63)

χm =

{
0, m ≤ 1,

1, m > 1.
(64)

f̂m(0) =
∂f̂m(0)

∂ξ
=

∂f̂m(1)
∂ξ

= f̂m(1) = 0,

ĝm(0) = ĝm(1) = θ̂m(0) = θ̂m(1) = 0,

ϕ̂′
m(0) − k2ϕ̂m(0) = ϕ̂m(1) = 0, (65)

Rf̂ ,m(ξ) = f̂ iv
m−1 + R

(
2

m−1∑
k=0

(
f̂ ′′′

m−1−kf̂k + ĝm−1−kĝ′k

)
− Mf̂ ′′

m−1

)
, (66)

Rg̃,m(ξ) = g̃′′m−1 + R

(
2

m−1∑
k=0

(
f̂m−1−kĝ′k − f̂ ′

m−1−kĝk

)
− Mĝm−1

)
, (67)

Rθ̃,m(η) =
1
Pr

(1 + R)θ̂′′m−1 + 2R

m−1∑
k=0

f̃m−1−kθ̃′k + MREc

(
m−1∑
k=0

f̃ ′
m−1−kf̃ ′

k +
m−1∑
k=0

g̃m−1−kg̃k

)

+ 12EcA
m−1∑
k=0

f̃ ′
m−1−kf̃ ′

k + Ec
m−1∑
k=0

g̃′m−1−kg̃′k + Ec
m−1∑
k=0

f̃ ′′
m−1−kf̃ ′′

k , (68)

Rϕ̃,m(η) =
1
R

1
Sc

ϕ̂′′
m−1 +

m−1∑
k=0

(
2f̃m−1−kϕ̂′

k + 2k1ĝm−1−kĝk − k1ĝm−1−k

k∑
l=0

ĝk−lĝl

)
− k1ϕ̂m−1. (69)

The general solutions (f̂m, ĝm, θ̂m, ϕ̂m) through special solutions (f̂∗
m, ĝ∗m, θ̂∗m, ϕ̂∗

m) are

f̂m(ξ) = f̂∗
m(ξ) + α∗

1 + α∗
2ξ + α∗

3ξ
2 + α∗

4ξ
3, (70)

ĝm(ξ) = ĝ∗m(ξ) + α∗
5 + α∗

6ξ, (71)

θ̂m(ξ) = θ̂∗m(ξ) + α∗
7 + α∗

8ξ, (72)
ϕ̂m(ξ) = ϕ̂∗

m(ξ) + α∗
9 + α∗

10ξ. (73)

6 Convergence analysis

In the homotopy analysis technique, the convergence control parameters have an essential role on convergence and
approximation rate for series solutions. For suitable values of these parameters, the h̄-curves are sketched at 13-th–order
of approximations in fig. 2. The exact ranges for momentum, energy and concentration equations are −2.2 ≤ hf̃ ≤ 0.8,
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Fig. 2. h-curves for f̂ ′′(0), ĝ′(0), θ̂′(0), bφ′(0).

Table 1. Series solutions when Pr = 0.7, Re = 0.01, M = 0.4, A1 = 0.1, A2 = 0.4, Ω = 1.0, R = 0.5, Ec = 0.1, Sc = 1.0,
A = 1, k1 = 0.4 and k2 = 0.7.

Order of approximations −f̂ ′′(0) −ĝ′(0) −θ̂′(0) φ̂′(0)

1 1.199445 0.3015600 0.9886505 0.4027557

3 1.199446 0.3013105 0.9831518 0.4038577

7 1.199446 0.3013001 0.9823611 0.4038813

8 1.199446 0.3013000 0.9823526 0.4038813

13 1.199446 0.3013000 0.9823480 0.4038813

20 1.199446 0.3013000 0.9823480 0.4038813

30 1.199446 0.3013000 0.9823480 0.4038813

40 1.199446 0.3013000 0.9823480 0.4038813

−2.1 ≤ hg̃ ≤ 0.85, 0.9 ≤ hθ̃ ≤ 0.1 and −2.0 ≤ hϕ̃ ≤ 0.1. Table 1 is plotted for the convergence series solutions when
Pr = 0.7, Re = 0.01, M = 0.4, A1 = 0.1, A2 = 0.4, Ω = 1.0, R = 0.5, Ec = 0.1, Sc = 1.0, A = 1, k1 = 0.4 and
k2 = 0.7. It is noticed that the 3rd, 8th, 13th and 7th orders of approximations are sufficient for the convergence of
f̂ ′′(0), ĝ′(0), θ̂′(0) and ϕ̂′(0).

7 Discussion

A mathematical model is presented for the flow of viscous fluid subject to thermal radiation and dissipation between
two rotating stretchable disks. The homotopy analysis method is implemented for the development of series solutions.
In this portion, the effects of the different pertinent variables are discussed through plots. Table 1 is plotted for
the convergent series solutions. Table 2 highlights the numerical results for skin friction coefficients in radial and
tangential directions. From table 2 it is noted that higher values of magnetic parameter reduces the magnitude of
(Cf1) at the lower disk while the magnitude of (Cf2) increases at the upper disk. Furthermore, the magnitude of (Cf1)
and (Cf2) monotonically decreases versus higher values of the Reynolds number and (A1). It is also noted that these
two quantities have a reverse response at the upper disk. The impacts of the radiation parameter, Eckert number and
Prandtl number on Nusselt numbers (Nux1, Nux2) at lower and upper disks are highlighted in table 3. Clearly, the
transfer rate decreases at the lower disk when (Pr) and (Ec) are increased and increases versus larger (R). Physically
for a larger Eckert number, the kinetic energy of the system increases, due to which temperature increases and thus
the heat transfer rate decreases. Furthermore, the heat transfer rate increases at the upper disk for (Pr), (R) and (Ec).
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Table 2. Numerical outcomes for Cf1 and Cf2 when M , A1 and R.

M Re A1 Cf1 Cf2

0.4 0.01 0.1 1.236710 1.825318

0.5 1.236819 1.825302

0.6 1.236929 1.825286

0.4 0.1 1.234769 1.829793

0.2 1.232733 1.834905

0.3 1.230825 1.840160

0.01 0.2 1.627713 2.022884

0.3 2.022300 2.220863

Table 3. Numerical outcomes for Nux1 and Nux2 when Pr, R and Ec.

Pr R Ec Nux1 Nux2

0.7 0.5 0.1 1.473522 1.555976

0.8 1.469740 1.563973

0.9 1.465957 1.571970

0.7 0.6 1.573522 1.655976

0.7 1.673522 1.755976

0.8 1.773522 1.855976

0.5 0.2 1.447161 1.611720

0.3 1.420799 1.667463

Fig. 3. f̂(ξ) against Re.

7.1 Velocity components: Radial (̂f′(ξ)), tangential (ĝ(ξ)), axial (̂f(ξ)) velocities

Figures 3–5 are plotted for the impact of (Re) on radial (f̂ ′(ξ)), tangential (ĝ(ξ)), axial (f̂(ξ)) velocity components.
In fig. 3, it is noted that the magnitude of (f̂(ξ)) decreases when (Re) is enhanced, i.e. (Re = 0, 2, 4, 6). Physically
the Reynolds number has a direct relation with inertial forces, therefore axial velocity is decreased. Dual behavior is
noticed for (f̂ ′(ξ)) versus larger (Re). Initially radial velocity increases closed to the lower disk and then it boosts
slowly when the Reynolds number takes the maximum value. Physically inertial forces enhance which directly affect
the velocity field. That is why velocity at the upper disk is higher than at the lower disk (fig. 4). As expected (ĝ(ξ))
decreases versus larger (Re) (fig. 5). Figure 6 describes the salient attributes of the magnetic parameter on tangential
velocity. Physically magnetic parameter is the ratio of electromagnetic to viscous forces. Therefore, enhancement
in the magnetic parameter creates the Lorentz force which causes flow to run in the opposite direction. Figures 7
and 8 report (f̂ ′(ξ)) and (f̂(ξ)) versus A1. As expected, the axial component of velocity is enhanced for larger
A1. Physically stretching rate increases for higher A1 (fig. 7). Dual effect of radial velocity is observed versus A1.
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Fig. 4. f̂ ′(ξ) against Re.

Fig. 5. ĝ(ξ) against Re.

Fig. 6. ĝ(ξ) against M .
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Fig. 7. f̂(ξ) against A1.

Fig. 8. f̂ ′(ξ) against A1.

Fig. 9. f̂(ξ) against A2.

Initially velocity increases closed to the lower disk and then it diminishes when A1 reaches to the maximum value, i.e.
A1 = 0.9. The outcome of A2 on axial velocity is displayed in fig. 9. It is shown that the magnitude of axial velocity
decreases at both upper and lower disk for A2. Figure 10 depicts the behavior of A2 on (f̂ ′(ξ)). The magnitude of
(f̂ ′(ξ)) decreases at the lower disk and it boosts at the upper disk through higher A2. Note that the stretching rate is
more at the upper disk than at the lower disk surface. Therefore, radial velocity enhances at the upper disk. Tangential
velocity in fig. 11 rises versus rotation Ω.
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Fig. 10. f̂ ′(ξ) against A2.

Fig. 11. ĝ(ξ) against Ω.

7.2 Temperature field

In this subsection, figs. 12–15 show the graphical results for different variables like Pr, R, Ec and M on (θ̂(ξ)).
Figure 12 delineates the impact of Pr on (θ̂(ξ)). It is examined that temperature decreases through higher Pr. The
thermal layer thickness also diminishes slowly for higher Pr, i.e. Pr = 0.50, 0.55, 0.60, 1.0. Physically larger Pr is
responsible for thermal diffusivity which declines the temperature of liquid. Figure 13 detects the characteristics of
radiation on (θ̂(ξ)). It is analyzed that temperature and layer thickness increase through higher R. A larger radiation
parameter produces more heat in the working liquid through the radiation process which consequently boosts the
thermal field. The curves of (θ̂(ξ)) versus (Ec) are highlighted in fig. 14. Physically, the ratio of kinetic energy to
enthalpy or dynamic temperature to the temperature is called the Eckert number. Larger Ec boosts the kinetic energy
of working fluid particles which results in the augmentation of the thermal field. Variation in the magnetic parameter
on (θ̂(ξ)) is shown in fig. 15. Physically the magnetic parameter depends on the Lorentz force which is the resistive
force to the liquid flow. It rises the kinetic energy on inside molecules or atoms. That is why temperature boosts.

7.3 Concentration

In this subsection, we established the graphical results for flow variables, i.e., homogeneous reaction variable (k1),
Schmidt number (Sc) and heterogeneous variable (k2) on (ϕ(ξ)). Figure 16 depicts the effect of (k1) on (ϕ(ξ)). As
expected, concentration decreases versus (k1). Physically the reactants are consumed through larger (k1) during the
homogeneous reaction. Figure 17 has been plotted to detect the physical behavior of the heterogeneous reaction variable
on (ϕ(ξ)). It is examined that the concentration of liquid particles on the disk surface decreases which directly affects
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Fig. 12. bθ(ξ) against Pr.

Fig. 13. bθ(ξ) against R.

Fig. 14. bθ(ξ) against Ec.

the concentration field. Figure 18 explores the physical explanation regarding the Schmidt number on (ϕ(ξ)). Since the
ratio of momentum to mass diffusivities is known as the Schmidt number. Therefore momentum diffusivity intensifies
through higher (Sc), which in turn increases (ϕ(ξ)).
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Fig. 15. bθ(ξ) against M .

Fig. 16. bφ(ξ) against k1.

Fig. 17. bφ(ξ) against k2.
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Fig. 18. bφ(ξ) against Sc.

Fig. 19. NG(ξ) against M .

Fig. 20. Be against M .

7.4 Entropy rate

The impacts of Be and (NG(ξ)) against magnetic parameter (M), ratio parameters (A1, A2), radiation parameter
(R), Eckert number (Ec), homogeneous reaction variable (k1), heterogeneous reaction variable (k2), Brinkman number
(Br), diffusion variable with respect to homogeneous reaction (L1) and diffusion variable with respect to heterogeneous
reaction (L2) are sketched in figs. 19–38. Figures 19 and 20 depict the role of (M) on (Be) and (NG(ξ)). From these
figures, it is easily examined that (NG(ξ)) increases versus (M = 0.0, 2.0, 4.0, 6.0). Physically for higher (M) the
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Fig. 21. NG(ξ) against A1.

Fig. 22. Be against A1.

Fig. 23. NG(ξ) against A2.

Lorentz force enhances which opposes the particles of liquid and therefore disorderedness increases. However, the
opposite trend is examined for (Be) versus (M) (see fig. 20). Figures 21–24 are plotted to examine the behavior of
variables (A1 = 0.0, 0.5, 1.0, 1.5 and A2 = 0.0, 0.4, 0.8, 1.2) on (Be) and (NG(ξ)). Here the opposite trend is examined
for (Be) and (NG(ξ)) versus higher (A1, A2). Physically through larger (A1, A2), the stretching rates enhance which
creates more disturbance in liquid particles and consequently boosts the disorderedness in the system. That is why
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Fig. 24. Be against A2.

Fig. 25. NG(ξ) against R.

Fig. 26. Be against R.

(NG(ξ)) is enhanced (see figs. 21 and 23). But opposite behavior for (Be) is presented in figs. 22 and 24. The variations
in (Be) and (NG(ξ)) due to the influence of radiation are sketched in figs. 25 and 26. Here both (Be) and (NG(ξ))
monotonically increase via radiation (R = 0.0, 0.5, 1.0, 1.5). Physically more heat is produced in the presence of
radiation in the system and as a result disorderedness increases. Therefore, both (Be) and (NG(ξ)) are increased.
Figures 27 and 28 are displayed for the effect of the Eckert number on (Be) and (NG(ξ)). As we strengthen the
(Ec), the (Be) and (NG(ξ)) monotonically decrease close to the lower disk while these gradually boost near the
upper disk when (Ec) attends the maximum range. Figures 29–32 analyze the behavior of (k1 = 0.0, 2.0, 4.0, 6.0) and
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Fig. 27. NG(ξ) against Ec.

Fig. 28. Be against Ec.

Fig. 29. NG(ξ) against k1.

(k2 = 0.0, 0.3, 0.6, 0.9) on (Be) and (NG(ξ)). Here both (Be) and (NG(ξ)) monotonically boost versus homogeneous
reaction and heterogeneous reaction parameters. Figures 33 and 34 are displayed to discuss how (Be) and (NG(ξ))
vary via larger (Br = 0.0, 0.4, 0.8, 1.2). Here (NG(ξ)) is increased for larger (Br). Physically for a larger Brinkman
number the dissipation phenomenon generates less conduction rate which consequently boosts (NG(ξ)). In fig. 34 it
is noticed that when Br = 0 then Be = 1.0. Physically it means that for (Br = 0), the irreversibility disappears for
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Fig. 30. Be against k1.

Fig. 31. NG(ξ) against k2.

Fig. 32. Be against k2.

viscous dissipation and only irreversibility associated with heat transfer is retained. There Be is maximum (Br = 0.0).
When we enhance the estimation of the Brinkman number then Be gradually decreases. Figures 35–38 are plotted to
analyze the salient aspects of (L1) and (L2) on (Be) and (NG(ξ)). Here both (Be) and (NG(ξ)) versus (L1) decrease
(see figs. 35 and 36). An opposite trend is noticed in the presence of (L2) on (Be) and (NG(ξ)) (see figs. 37 and 38).
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Fig. 33. NG(ξ) against Br.

Fig. 34. Be against Br.

Fig. 35. NG(ξ) against L1.
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Fig. 36. Be against L1.

Fig. 37. NG(ξ) against L2.

Fig. 38. Be against L2.
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8 Concluding remarks

Here irreversibility in radiative flow of viscous material between two rotating disks via quartic autocatalysis chemical
reaction is addressed. The main outcomes of the present work are listed below:

– Magnitude of axial velocity decreases versus larger (Re).

– Tangential velocity is decreased by the magnetic parameter.

– Temperature decreases versus Prandtl number.

– For larger (k1) and (k2), concentration decreases.

– (Be) and (NG(ξ)) show opposite trends for the magnetic variable.

– A dual trend is noticed for both (Be) and (NG(ξ)) via Eckert number.

Nomenclature

u, v, w velocity components μ dynamic viscosity
r, θ, z Cartesian coordinates σ◦ Stefan Boltzmann constant
ρ density ε constant pressure
p̃ pressure Re Reynolds number
ν kinematic viscosity M magnetic parameter
σ electrical conductivity A1, A2 ratio parameter
B0 magnetic field Pr Prandtl number
a1, a2 stretching rates of lower and upper disks R radiation parameter
h distance between two disks Ec Eckert number
Ω1, Ω2 rotational velocities of lower and upper disks A dimensionless parameter
T̃1 temperature at lower disk Sc Schmidt number
T̃2 temperature at upper disk k1 homogeneous reaction parameter
ξ space variable k2 heterogeneous reaction parameter
k◦ mean absorption coefficient δ diffusion ratio
k thermal conductivity Cf1 skin friction at lower disk
τzr shear stress in radial direction Cf2 skin friction at upper disk
τzθ shear stress in tangential direction τw total shear stress
Nux1 Nusselt number at lower disk Nux2 Nusselt number at upper disk
Rr local Reynolds number L2 diffusion variable with respect
Br Brinkman number to heterogeneous reaction
α1 temperature difference parameter L1 diffusion variable with respect
ρcp heat capacitance to homogeneous reaction
DC1 , DC2 diffusion species coefficients NG entropy generation rate
Ĉ1, Ĉ2 concentrations cp specific heat capacity

kc, ks reaction rates
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