Skip to main content
Log in

Investigation of free convection in micropolar nanofluid with induced magnetic field

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The spotlight of the study is mainly the effect of the induced magnetic field on the free convection for a non-Newtonian micropolar nanofluid using the single phase model. The nondimensional equations describing the fluid motion, energy, angular momentum and the induced magnetic field of nanofluid are solved using the Keller box method. The study of the effect of the magnetic Reynolds number on the fluid flow, heat and mass transfer is carried out as an important part of the investigation. The behavior of the nanofluid is also observed under the effect of the spin viscosity material parameter of the micropolar fluid. It is interesting to see that the angular momentum boundary layer shrinks for a greater Prandtl number while the suction velocity enhances the angular momentum profile. The material parameter is found to reduce the velocity profile as well as the skin friction coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Kakac, W. Aung, R. Viskanta, Natural Convection: Fundamentals and Applications (Hemisphere Publishing Corp., Washington, DC, 1985) pp. 475--611

  2. V.J. Rossow, On Flow of Electrically Conducting Fluids Over a Flat Plate in the Presence of a Transverse Magnetic Field (USA, 1958)

  3. V.M. Soundalgekar, Proc. Indian Acad. Sci. A 65, 179 (1967)

    Article  Google Scholar 

  4. N.D. Nanousis, Mech. Res. Commun. 23, 81 (1996)

    Article  Google Scholar 

  5. G.K. Singha, P.N. Deka, Theor. Appl. Mech. 33, 259 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  6. D. Srinivasacharya, K. Kaladhar, Acta Mech. Sin. 28, 41 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  7. D.S. Chauhan, P. Rastogi, Int. J. Nonlinear Sci. 14, 228 (2012)

    MathSciNet  Google Scholar 

  8. M. Hatami, D.D. Ganji, J. Magn. Magn. Mater. 396, 275 (2015)

    Article  ADS  Google Scholar 

  9. M. Bilal, S. Hussain, M. Sagheer, Bull. Polish Acad. Sci. Tech. Sci. 65, 383 (2017)

    Google Scholar 

  10. K. Mehmood, S. Hussain, M. Sagheer, Int. J. Heat Mass Transf. 109, 397 (2017)

    Article  Google Scholar 

  11. M. Bilal, M. Sagheer, S. Hussain, Y. Mehmood, Commun. Theor. Phys. 67, 688 (2017)

    Article  ADS  Google Scholar 

  12. O.A. Bé, Int. J. Therm. Sci. 48, 1596 (2009)

    Article  Google Scholar 

  13. K.J. Basant, I. Sani, J. Phys. Soc. Jpn. 82, 084401 (2013)

    Article  Google Scholar 

  14. Sarveshanand, A.K. Singh, SpringerPlus 4, 333 (2015)

    Article  Google Scholar 

  15. S. Azeem, R. Ali, Walailak J. Sci. Technol. 10, 43 (2012)

    Google Scholar 

  16. M. Khan, R. Ali, S. Azeem, Walailak J. Sci. Technol. 10, 517 (2013)

    Google Scholar 

  17. S. Azeem, R. Ali, Can. J. Appl. Sci. 2, 202 (2012)

    Google Scholar 

  18. R. Ali, S. Azeem, M. Khan, M. Ayub, Eng. Comput. 32, 149 (2016)

    Article  Google Scholar 

  19. A.C. Eringen, J. Math. Mech. 16, 1 (1966)

    MathSciNet  Google Scholar 

  20. V.K. Stokes, Phys. Fluids 9, 1709 (1966)

    Article  ADS  Google Scholar 

  21. H.H. Sherief, M.S. Faltas, E.A. Ashmawy, A.M. Abdel-Hameid, Eur. J. Mech. B Fluids 59, 186 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  22. A.J. Chamkha, T. Groş, Int. Commun. Heat Mass Transf. 29, 1119 (2002)

    Article  Google Scholar 

  23. R. Bhargava, L. Kumar, H.S. Takhar, Int. J. Eng. Sci. 41, 123 (2003)

    Article  Google Scholar 

  24. O. Abdulaziz, I. Hashim, Numer. Heat Transf. A: Appl. 55, 270 (2009)

    Article  ADS  Google Scholar 

  25. H. Xu, S.J. Liao, I. Pop, J. Non-Newtonian Fluid Mech. 139, 31 (2006)

    Article  Google Scholar 

  26. A. Postelnicu, I. Pop, Appl. Math. Comput. 217, 4359 (2011)

    MathSciNet  Google Scholar 

  27. A. Ishak, Y.Y. Lok, I. Pop, Chem. Eng. Commun. 197, 1417 (2010)

    Article  Google Scholar 

  28. A. Malvandi, D.D. Ganji, Int. J. Sediment Res. 29, 423 (2014)

    Article  Google Scholar 

  29. S.A. Moshizi, A. Malvandi, D.D. Ganji, I. Pop, Int. J. Therm. Sci. 84, 347 (2014)

    Article  Google Scholar 

  30. A. Malvandi, Therm. Sci. 19, 1603 (2015)

    Article  Google Scholar 

  31. S.U.S. Choi, J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, technical report, Argonne National Lab., IL, USA (1995)

  32. S. Hussain, S.E. Ahmed, T. Akbar, Int. J. Heat Mass Transf. 114, 1054 (2017)

    Article  Google Scholar 

  33. A. Kamran, S. Hussain, M. Sagheer, N. Akmal, Res. Phys. 7, 3037 (2017)

    Google Scholar 

  34. M. Sheikholeslami, H.B. Rokni, Int. J. Heat Mass Transf. 107, 288 (2017)

    Article  Google Scholar 

  35. T. Cebeci, P. Bradshaw, Physical and Computational Aspects of Convective Heat Transfer (Springer Science & Business Media, 2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Akmal.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akmal, N., Sagheer, M., Hussain, S. et al. Investigation of free convection in micropolar nanofluid with induced magnetic field. Eur. Phys. J. Plus 134, 235 (2019). https://doi.org/10.1140/epjp/i2019-12512-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12512-7

Navigation