Skip to main content
Log in

Density functional study on structures and electronic properties of NO adsorbed into PtmIrn(m + n = 2-7) clusters

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The structure, stability and electronic properties of PtmIrnNO(m + n = 2-7) clusters have been investigated via density functional theory. All ground state structures show an adsorption of NO at the top site of the bare cluster via the N atom. In all of the bimetallic clusters, the NO molecule prefers to be adsorbed near the Ir atom site. The adsorption energy of bimetallic PtmIrnNO (\(m+n=2,4,6\)) is larger than that of pure clusters with the same cluster size, showing that the interaction of even alloy clusters and NO molecule are stronger. There exist clear even-odd oscillations in the second-order energy difference curves of PtmIrNO and PtIrnNO, indicating that Pt3IrNO, Pt5IrNO, PtIr3NO and PtIr5NO clusters are more stable than their neighbors. It is obvious that there exist odd-even oscillations in the curves of \(m+n=3,4,6\) energy gaps, showing that PtIr2NO, Pt3IrNO, PtIr3NO and Pt3Ir3NO clusters are chemically more stable. Magnetic and electronic properties analyses show that the total magnetic moment provided by Ir and Pt atoms, and the magnetic moment mainly arises from localization of the d-electron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Ferrando, J. Jellinek, R.L. Johnston, Chem. Rev. 39, 845 (2008)

    Article  Google Scholar 

  2. J.H. Sinfelt, Bimetallic Catalysts: Discoveries, Concepts and Applications (Wiley Interscience, 1983)

  3. S. Hu, L. Xiong, X. Ren, C. Wang, Y. Luo, Int. J. Hydrogen Energ. 34, 8723 (2009)

    Article  Google Scholar 

  4. L. Wang, Q. Han, S. Hu, D. Li, P. Zhang et al., Appl. Catal. B-Environ. 164, 128 (2015)

    Article  Google Scholar 

  5. N. Long, J. Du, G. Jiang, Mol. Phys. 113, 3628 (2015)

    Article  ADS  Google Scholar 

  6. A.W. Hauser, J. Gomes, M. Bajdich et al., Phys. Chem. Chem. Phys. 15, 20727 (2013)

    Article  Google Scholar 

  7. A.W. Hauser, P.R. Horn, M. Head-Gordon et al., Phys. Chem. Chem. Phys. 18, 10906 (2016)

    Article  Google Scholar 

  8. X.R. Zhang, Y.N. Cui, L.L. Hong, J. Comput. Theor. Nanosci. 6, 640 (2009)

    Article  Google Scholar 

  9. W.L. Guo, Q. Rao, X.R. Zhang, Chin. J. Comput. Phys. 29, 453 (2012)

    Google Scholar 

  10. X.R. Zhang, X. Yang, Y. Li, W.L. Guo, Acta Chim. Sin. 69, 2063 (2011)

    Google Scholar 

  11. X.R. Zhang, M. Luo et al., Bull. Mater. Sci. 38, 425 (2015)

    Article  Google Scholar 

  12. P.Y. Huo, X.R. Zhang et al., Bull. Mater. Sci. 40, 1087 (2017)

    Article  Google Scholar 

  13. Zh.Ch. Yu, X.R. Zhang et al., Bull. Mater. Sci. 41, 2 (2018)

    Article  Google Scholar 

  14. K. Gao, X.R. Zhang, Zh.Ch. Yu et al., Comput. Theor. Chem. 1138, 168 (2018)

    Article  Google Scholar 

  15. A. Endou, N. Ohashi et al., J. Phys. Chem. B 104, 5110 (2000)

    Article  Google Scholar 

  16. P. Zhu, T. Shimada, H. Kondoh et al., Surf. Sci. 565, 232 (2004)

    Article  ADS  Google Scholar 

  17. W. Mannstadt, A.J. Freeman, Phys. Rev. B 55, 13298 (1997)

    Article  ADS  Google Scholar 

  18. M. Tsai, K.C. Hass, Phys. Rev. B 51, 14616 (1995)

    Article  ADS  Google Scholar 

  19. B. Hamad, Z. El-Bayyari, A. Marashdeh, Chem. Phys. 443, 26 (2014)

    Article  Google Scholar 

  20. F. Aguilera-Granja, R. Pis-Diez, J. Nanopart. Res. 18, 121 (2016)

    Article  ADS  Google Scholar 

  21. P.Y. Huo, X.R. Zhang, J. Zhu et al., Bull. Mater. Sci. 40, 1087 (2017)

    Article  Google Scholar 

  22. A. Endou, N. Ohashi, S. Takami et al., Top. Catal. 11-12, 271 (2000)

    Article  Google Scholar 

  23. N.B. Singh, B.I. Sharma, U. Sarkar, Physica E 73, 12 (2015)

    Article  ADS  Google Scholar 

  24. B. Delley, Phys. Rev. B 66, 155125 (2002)

    Article  ADS  Google Scholar 

  25. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  26. J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)

    Article  ADS  Google Scholar 

  27. B. Delley, J. Chem. Phys. 113, 7756 (2000)

    Article  ADS  Google Scholar 

  28. P. Pulay, J. Comput. Chem. 3, 556 (1982)

    Article  Google Scholar 

  29. M.N. Huda, M.K. Niranjan, B.R. Sahu, L. Kleinman, Phys. Rev. A 73, 053201 (2006)

    Article  ADS  Google Scholar 

  30. P. Bloński, J. Hafner, Phys. Rev. B 79, 1377 (2009)

    Google Scholar 

  31. S.H. Yang, D.A. Drabold et al., J. Phys. Condens Mat. 9, (1997)

  32. M. Chen, D.A. Dixon, J. Phys. Chem. A 117, 3676 (2013)

    Article  Google Scholar 

  33. P. Begum, P. Gogoi, B.K. Mishra et al., Int. J. Quantum Chem. 115, 837 (2015)

    Article  Google Scholar 

  34. K.P. Huber, G. Herzberg, J. Mol. Struct. 124, 273 (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiu-Rong Zhang.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, K., Zhang, XR. & Yu, ZC. Density functional study on structures and electronic properties of NO adsorbed into PtmIrn(m + n = 2-7) clusters. Eur. Phys. J. Plus 134, 162 (2019). https://doi.org/10.1140/epjp/i2019-12495-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12495-3

Navigation