Skip to main content
Log in

Mathematical modelling of two-fluid electro-osmotic peristaltic pumping of an Ellis fluid in an axisymmetric tube

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

An Erratum to this article was published on 03 June 2019

This article has been updated

Abstract.

This article explores analytically the dynamics of two-fluid electro-osmotic peristaltic flow through a cylindrical tube. The rheology of the fluid in the central core (inner region or core region) is captured through the Ellis equation. The region adjacent to the wall (outer region or peripheral region) is occupied by a Newtonian fluid. The equations governing the flow in each region are modeled by using the appropriate suppositions of long wavelength and low Reynolds number. Closed form expressions for the stream function corresponding to each region are obtained and utilized to determine the axial pressure gradient and the interface between the inner and the outer regions. The pumping characteristics, trapping and reflux phenomena are investigated in detail with reference to the Ellis model parameters and the electro-kinetic slip velocity. The present model also generalizes earlier studies from the literature which can be retrieved as special cases. The analysis shows that pressure drop at zero volumetric flow rate is elevated with increasing occlusion parameter. Trapping and reflux phenomena are mitigated with increasing electro-osmotic slip and shear-thinning effects. At larger value of the occlusion parameter an increase in the power-law index reduces the magnitude of the pressure drop. Increasing Ellis rheological parameter reduces the pressure drop over the entire range of occlusion parameters for the case when the peripheral region fluid viscosity exceeds that of the core region fluid. The results obtained may be applicable in the modulation of peristaltic pumping in the efficient operation of various industrial and bio-medical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Change history

  • 03 June 2019

    After publication of the paper, the authors have noticed that panels (c) and (d) of fig. 10 were incorrect. Here is their correct version.

References

  1. A.H. Shapiro, M.Y. Jaffrin, S.L. Weinberg, J. Fluid Mech. 37, 799 (1969)

    Article  ADS  Google Scholar 

  2. K.K. Raju, R. Devanathan, Rheol. Acta 11, 170 (1972)

    Article  Google Scholar 

  3. A.M. Provost, W.H. Schwarz, J. Fluid Mech. 279, 177 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  4. A.R. Rao, M. Mishra, J. Non-Newtonian Fluid Mech. 121, 163 (2004)

    Article  Google Scholar 

  5. T. Hayat, Q. Hussain, N. Ali, Physica A 387, 3399 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  6. T. Hayat, N. Saleem, N. Ali, Commun. Nonlinear Sci. Numer. Simul. 15, 2407 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  7. A.R. Rao, M. Mishra, Acta Mech. 168, 35 (2004)

    Article  Google Scholar 

  8. S. Usha, A.R. Rao, Int. J. Eng. Sci. 38, 1355 (2000)

    Article  Google Scholar 

  9. T. Hayat, S. Farooq, B. Ahmad, A. Alsaedi, AIP Adv. 6, 045302 (2016)

    Article  ADS  Google Scholar 

  10. J.C. Misra, B. Mallick, A. Sinha, Alex. Eng. J. 57, 391 (2018)

    Article  Google Scholar 

  11. N. Ali, M. Sajid, T. Javed, Z. Abbas, Int. J. Heat Mass Transfer 53, 3319 (2010)

    Article  Google Scholar 

  12. D. Takagi, N.J. Balmforth, J. Fluid Mech. 672, 196 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  13. D. Takagi, N.J. Balmforth, J. Fluid Mech. 672, 219 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  14. N. Ali, K. Javid, M. Sajid, AIP Adv. 6, 025111 (2016)

    Article  ADS  Google Scholar 

  15. N. Ali, K. Javid, M. Sajid, A. Zaman, T. Hayat, Int. J. Heat Mass Transfer 94, 500 (2016)

    Article  Google Scholar 

  16. A. Tanveer, T. Hayat, F. Alsaadi, A. Alsaedi, Comput. Biol. Med. 82, 71 (2017)

    Article  Google Scholar 

  17. T. Hayat, N. Ali, Z. Abbas, Phys. Lett. A 370, 331 (2007)

    Article  ADS  Google Scholar 

  18. A.I. Dobrolyubovn, G. Douchyz, J. Theor. Biol. 219, 55 (2002)

    Article  Google Scholar 

  19. J.B. Shukla, R.S. Parihar, B.R.P. Rao, S.P. Gupta, J. Fluid Mech. 97, 225 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  20. J.G. Brasseur, S. Corrsin, Q.L. Nan, J. Fluid Mech. 174, 495 (1987)

    Article  ADS  Google Scholar 

  21. A.R. Rao, S. Usha, J. Fluid Mech. 298, 271 (1995)

    Article  ADS  Google Scholar 

  22. V.P. Srivastava, M. Saxena, Rheol. Acta 34, 406 (1995)

    Article  Google Scholar 

  23. K. Vajravelu, S. Sreenadh, R.R. Hemadri, K. Murugeshan, Int. J. Fluid Mech. Res. 36, 244 (2009)

    Article  Google Scholar 

  24. J.C. Misra, S.K. Pandey, Int. J. Eng. Sci. 37, 1841 (1999)

    Article  Google Scholar 

  25. M. Mishra, A.R. Rao, J. Biomech. 38, 779 (2005)

    Article  Google Scholar 

  26. K. Vajravelu, S. Sreenadh, V.R. Babu, Quart. Appl. Math. 64, 593 (2006)

    Article  MathSciNet  Google Scholar 

  27. A. Kavitha, R.H. Reddy, R. Saravana, S. Sreenadh, Ain Shams Eng. J. 8, 683 (2017)

    Article  Google Scholar 

  28. S. Chakraborty, J. Phys. D 39, 5356 (2006)

    Article  ADS  Google Scholar 

  29. M. Zhao, S. Wang, S. Wei, J. Non-Newtonian Fluid Mech. 201, 135 (2013)

    Article  Google Scholar 

  30. C. Zhao, C. Yang, Electrophoresis 34, 662 (2013)

    Article  Google Scholar 

  31. D.A. Saville, Annu. Rev. Fluid Mech. 9, 321 (1977)

    Article  ADS  Google Scholar 

  32. A.M. Afonso, M.A. Alves, F.T. Pinho, J. Non-Newtonian Fluid Mech. 159, 50 (2009)

    Article  Google Scholar 

  33. A.M. Afonso, M.A. Alves, F.T. Phino, J. Colloid Interface Sci. 395, 277 (2013)

    Article  ADS  Google Scholar 

  34. S. Dhinakaran, A.M. Afonso, M.A. Alves, F.T. Phino, J. Colloid Interface Sci. 344, 513 (2010)

    Article  ADS  Google Scholar 

  35. L.L. Ferras, A.M. Afonso, M.A. Alves, F.T. Phino, J.M. Noberga, J. Colloid Interface Sci. 420, 152 (2014)

    Article  ADS  Google Scholar 

  36. S. Das, S. Chakraborty, Anal. Chim. Acta 559, 15 (2006)

    Article  Google Scholar 

  37. D. Tripathi, S. Bhushan, O. Anwar Bég, Colloids Surf. A: Physicochem. Eng. Asp. 506, 32 (2016)

    Article  Google Scholar 

  38. D. Tripathi, A. Sharma, O. Anwar Bég, Adv. Powder Technol. 29, 639 (2018)

    Article  Google Scholar 

  39. J. Prakash, D. Tripathi, J. Mol. Liq. 256, 352 (2018)

    Article  Google Scholar 

  40. P. Goswami, J. Chakraborty, A. Bandopadhyay, S. Chakraborty, Microvasc. Res. 103, 41 (2016)

    Article  Google Scholar 

  41. N. Ali, A. Abbasi, I. Ahmed, AIP Adv. 5, 097214 (2015)

    Article  ADS  Google Scholar 

  42. J.S. Goud, R.H. Reddy, Int. J. Civ. Eng. Technol. 9, 847 (2018)

    Google Scholar 

  43. R.J. Hunter, Zeta Potential in Colloid Sciences: Principles and Applications (Academic Press, London, 1981)

  44. H.S. Lew, Y.C. Fung, C.B. Lowenstein, J. Bio-mech. 4, 297 (1971)

    Google Scholar 

  45. T.W. Secomb, A.R. Pries, C. R. Phys. 14, 470 (2013)

    Article  ADS  Google Scholar 

  46. S. Kim, B. Namgung, P.K. Ong, Y. Cho, K.J. Chun, D. Lim, J. Mech. Sci. Technol. 23, 1718 (2009)

    Article  Google Scholar 

  47. D.A. Fedosov, M. Dao, G.E. Karniadakis, S. Suresh, Ann. Biomed. Eng. 42, 368 (2014)

    Article  Google Scholar 

  48. M. Turkyilmazoglu, Eur. J. Mech. - B/Fluids 65, 184 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  49. M. Turkyilmazoglu, Int. J. Heat Mass Transfer 85, 609 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Hussain.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, N., Hussain, S., Ullah, K. et al. Mathematical modelling of two-fluid electro-osmotic peristaltic pumping of an Ellis fluid in an axisymmetric tube. Eur. Phys. J. Plus 134, 141 (2019). https://doi.org/10.1140/epjp/i2019-12488-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12488-2

Navigation