Skip to main content
Log in

Portable Vis-NIR-FORS instrumentation for restoration products detection: Statistical techniques and clustering

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The identification of modern restoration products with portable instrumentation will enable conservators and conservation scientists to gain information in a shorter time and at a reduced cost, compared to standard micro-destructive techniques. This study employs portable Visible Near-Infrared Fibre Optics Reflectance Spectrometry (Vis-NIR-FORS) as a diagnostic tool to identify and classify the considered products. We assembled a large library made of the most commonly used industrial products in the field of cultural heritage. Thirty products were applied in different concentrations on different substrates (e.g., marble, mortar, polychrome plaster, modern mural painting), and mock-up samples were investigated through Vis-NIR-FORS in the 350–2200 nm range. We then applied several statistical techniques and modern machine learning algorithms such as clustering to the entire database, to quantify the degree of correlation among different spectra. We show how using a multivariate, robust statistical approach can increase the signal-to-noise ratio, thus leading to a more precise identification and localisation of these products. Finally, the proposed procedure was also applied to spectra collected in situ on mural paintings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Calabrese et al., Stud. Conserv. 63, S43 (2018)

    Article  Google Scholar 

  2. C. Miliani et al., Appl. Phys. A 106, 295 (2012)

    Article  ADS  Google Scholar 

  3. F. Rosi et al., Angew. Chem. 125, 5366 (2013)

    Article  Google Scholar 

  4. B. Grabowski et al., J. Cult. Herit. 31, 1 (2018)

    Article  Google Scholar 

  5. C. Sessa et al., Anal. Bioanal. Chem. 406, 6735 (2014)

    Article  Google Scholar 

  6. C. Miliani et al., Acc. Chem. Res. 43, 728 (2010)

    Article  Google Scholar 

  7. B. Doherty et al., Mol. Biomol. Spectrosc. 115, 330 (2013)

    Article  Google Scholar 

  8. M. Mercurio et al., Rend. Online Soc. Geol. It. 42, 115 (2017)

    Google Scholar 

  9. M. Mercurio et al., Talanta 178, 147 (2018)

    Article  Google Scholar 

  10. C. Ricci et al., Talanta 69, 1221 (2006)

    Article  Google Scholar 

  11. F. Izzo, in 6th International Conference: YOCOCU, Youth in Conservation of Cultural Heritage, Matera, May 22–26, 2018 (CNR-IBAM, 2018)

  12. M.E. Oddo et al., IOP Conf. Ser.: Mater. Sci. Eng. 364, 012002 (2018)

    Article  Google Scholar 

  13. C. Grifa et al., Int. J. Conserv. Sci. 7, 885 (2016)

    Google Scholar 

  14. J. Delaney et al., Appl. Spetrosc. 64, 584 (2010)

    Article  ADS  Google Scholar 

  15. M. Bacci et al., J. Cult. Herit. 4, 329 (2003)

    Article  Google Scholar 

  16. C. Cucci et al., Microchem. J. 138, 45 (2018)

    Article  Google Scholar 

  17. M. Aceto et al., Anal. Methods 6, 1488 (2014)

    Article  Google Scholar 

  18. J.K. Delaney et al., Stud. Conserv. 59, 91 (2014)

    Article  Google Scholar 

  19. P. Ricciardi, Angew. Chem. Int. Ed. 51, 5607 (2012)

    Article  Google Scholar 

  20. K.A. Dooley et al., Analyst 138, 4838 (2013)

    Article  ADS  Google Scholar 

  21. K.A. Dooley et al., Anal. Methods 9, 28 (2017)

    Article  Google Scholar 

  22. Y. Dong et al., Food Control 78, 144 (2017)

    Article  Google Scholar 

  23. A. Tournié et al., J. Cult. Herit. 26, 28 (2017)

    Article  Google Scholar 

  24. M.R. Derrick, Infrared Spectroscopy in Conservation Science (The Getty Conservation Institute, Los Angeles, 1999)

  25. H.G.M. Edwards, J.M. Chalmers (Editors), Raman Spectroscopy in Archeological and Art History (Royal Society of Chemistry, Cambridge, 2005)

  26. L. Osete-Cortina, M.T. Doménech-Carbo, J. Chromatogr. A 1127, 228 (2006)

    Article  Google Scholar 

  27. J. Peris-Vicente et al., Anal. Chem. 81, 3180 (2009)

    Article  Google Scholar 

  28. L. Burgio, R.J.H. Clark, Spectrochim. Acta Part A 57, 1491 (2001)

    Article  ADS  Google Scholar 

  29. L. Chua et al., Microchem. J. 134, 246 (2017)

    Article  Google Scholar 

  30. F. Rosi et al., Microchem. J. 124, 898 (2016)

    Article  Google Scholar 

  31. C. Cucci et al., J. Cult. Herit. 14, 290 (2013)

    Article  Google Scholar 

  32. F. Gabrieli et al., Angew. Chem. Int. Ed. 57, 7341 (2017)

    Article  Google Scholar 

  33. S. Steger et al., Spectrochim. Acta Part A 195, 103 (2018)

    Article  ADS  Google Scholar 

  34. M. Raudino et al., Langmuir 33, 5675 (2017)

    Article  Google Scholar 

  35. M. Baglioni et al., Angew. Chem. 130, 7477 (2018)

    Article  Google Scholar 

  36. F. Izzo et al., Construct. Build Mater. 117, 129 (2016)

    Article  Google Scholar 

  37. F. Rosi et al., Anal. Bioanal. Chem. 395, 2097 (2009)

    Article  Google Scholar 

  38. M. Bacci et al., J. Am. Inst. Conserv. 46, 27 (2007)

    Article  Google Scholar 

  39. A. Jain, R. Dubes, Algorithms for Clustering Data (Prentice-Hall, Englewood Cliffs, NJ, 1988)

  40. C. Edelbrock, Multivariate Behav. Res. 14, 367 (1979)

    Article  Google Scholar 

  41. S.C. Johnson, Psychometrika 32, 241 (1966)

    Article  Google Scholar 

  42. P. Eilers, H. Boelens, Baseline Correction with Asymmetric Least Squares Smoothing, unpublished (2005)

  43. A. Kwiatkowski et al., Metrol. Meas. Syst. 17, 549 (2010)

    Article  Google Scholar 

  44. R. Ploeger et al., Appl. Spectrosc. 65, 429 (2011)

    Article  ADS  Google Scholar 

  45. M. Vagnini et al., Anal. Bional. Chem. 395, 2107 (2009)

    Article  Google Scholar 

  46. V. Pintus et al., Anal. Bional. Chem. 399, 2961 (2011)

    Article  Google Scholar 

  47. E. Tesser et al., J. Cult. Herit. 31, 72 (2018)

    Article  Google Scholar 

  48. M. Favaro et al., Polym. Degrad. Stabil. 91, 3083 (2006)

    Article  Google Scholar 

  49. A. Lo Monaco, in Proceedings of SPIE, edited by L. Pezzati, R. Salimbeni, vol. 8084, O3A: Optics for Arts, Architecture, and Archaeology III (SPIE, 2011) https://doi.org/10.1117/12.889147

  50. D. Scalarone et al., J. Anal. Apll. Pyrolysis 64, 345 (2002)

    Article  Google Scholar 

  51. D. Scalarone et al., J. Mass Spectrom. 38, 607 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Calabrese.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Odisio, N., Calabrese, M., Idone, A. et al. Portable Vis-NIR-FORS instrumentation for restoration products detection: Statistical techniques and clustering. Eur. Phys. J. Plus 134, 67 (2019). https://doi.org/10.1140/epjp/i2019-12469-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12469-5

Navigation