Skip to main content
Log in

Study of the effects of source type and magnetic field on the spatial distribution of positron annihilation events in PET/MRI applications

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this paper, we investigate the spatial distribution of positron annihilation events in PET//MRI systems. A spherical source ranging from 0mm to 10mm in radius was placed in water to represent the tumor region. The magnetic field strength was adjusted from 0T to 30T, and three positron nuclides, 18F , 11C , 68Ga , were used. The positron annihilation distribution was compared with the nuclide distribution (to represent pathological tumor), and the differences in these distribution with and without the magnetic field were evaluated. The compression effect of magnetic field on positron distribution was also investigated. For 11C and 68Ga sources with radioactive source size (rs) of less than 4 mm and 6 mm, respectively, it was found that the critical radius (d of the sphere, which contains 90% annihilated positrons, was significantly larger than its original radioactive source size rs. When the magnetic field was increased to 15T, it was found that the greatest compression occurred with a 2 mm 68Ga source (which also exhibited the greatest contraction in volume V1 although this was larger than the source volume V . Our proposed model of the volume source indicates that the positron distribution deviates greatly from the nuclide distribution for high-energy positron emitted in small source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Hugenschmidt, Surf. Sci. Rep. 71, 547 (2016)

    Article  ADS  Google Scholar 

  2. K. Sato et al., Radiat. Phys. Chem. 78, 1085 (2009)

    Article  ADS  Google Scholar 

  3. P.J. Schultz, K.G. Lynn, Rev. Mod. Phys. 60, 701 (1988)

    Article  ADS  Google Scholar 

  4. R.W. Siegel, Annu. Rev. Mater. Sci. 10, 393 (1980)

    Article  ADS  Google Scholar 

  5. B. Bergersen, E. Pajanne, Appl. Phys. 4, 25 (1974)

    Article  ADS  Google Scholar 

  6. X. Ning et al., Nucl. Instrum. Methods Phys. Res. B 397, 75 (2017)

    Article  ADS  Google Scholar 

  7. M. Yamawaki et al., Mater. Sci. Forum 733, 310 (2013)

    Article  Google Scholar 

  8. A.J. Reader, Phys. Med. 24, 49 (2008)

    Article  Google Scholar 

  9. L.M. Fraile et al., Nucl. Instrum. Methods Phys. Res. A 814, 110 (2016)

    Article  ADS  Google Scholar 

  10. T.J. Fraum et al., Acad. Radiol. 23, 220 (2016)

    Article  Google Scholar 

  11. J.L. Carreras-Delgado et al., Rev. Esp. Med. Nucl. Imagen Mol. 35, 313 (2016)

    Google Scholar 

  12. J. Baxa et al., Eur. J. Radiol. 94, A35 (2017)

    Article  Google Scholar 

  13. E. Ferdova et al., Eur. J. Radiol. 94, A52 (2017)

    Article  Google Scholar 

  14. M. Soret et al., J. Nucl. Med. 48, 932 (2007)

    Article  ADS  Google Scholar 

  15. O. Bertolli et al., Phys. Med. 32, 323 (2016)

    Article  Google Scholar 

  16. C. Li et al., Eur. Phys. J. Plus 132, 484 (2017)

    Article  Google Scholar 

  17. J.C. Cheng et al., IEEE Trans. Nucl. Sci. 62, 101 (2015)

    Article  ADS  Google Scholar 

  18. T.R. Miller, P.W. Grigsby, Int. J. Radiat. Oncol. 53, 353 (2002)

    Article  Google Scholar 

  19. R. Kraus et al., IEEE Trans. Nucl. Sci. 59, 1900 (2012)

    Article  ADS  Google Scholar 

  20. J.C. Cheng, in Proceedings of the 2014 IEEE Nuclear Science Symposium and Medical Imaging (IEEE, 2014) https://doi.org/10.1109/NSSMIC.2014.7431012

  21. D. Burdette, in 2007 IEEE Nuclear Science Symposium Conference Record, Vol. 5 (IEEE, 2007) pp. 3383--3389, https://doi.org/10.1109/NSSMIC.2007.4436857

  22. G. Soultanidis et al., J. Phys.: Conf. Ser. 317, 012021 (2011)

    Google Scholar 

  23. A. Hattori et al., Ann. Thorac. Surg. 102, 407 (2016)

    Article  Google Scholar 

  24. A.H. Wolfson et al., Gynecol. Oncol. 141, 255 (2016)

    Article  Google Scholar 

  25. J.C. Walsh et al., Hum. Pathol. 56, 123 (2016)

    Article  Google Scholar 

  26. F. Garibaldi et al., Eur. Phys. J. Plus 132, 396 (2017)

    Article  Google Scholar 

  27. A. Goertzen et al., EJNMMI Phys. 2, A54 (2015)

    Article  Google Scholar 

  28. A. Jena et al., Eur. J. Radiol. 86, 261 (2017)

    Article  Google Scholar 

  29. F. Nishikido et al., Nucl. Instrum. Methods Phys. Res. A 863, 55 (2017)

    Article  ADS  Google Scholar 

  30. A.A. Attarwala et al., Z. Med. Phys. 27, 132 (2017)

    Article  Google Scholar 

  31. J. Allison et al., Nucl. Instrum. Methods Phys. Res. A 835, 186 (2016)

    Article  ADS  Google Scholar 

  32. M. Pagani et al., Eur. J. Nucl. Med. Mol. Imag. 24, 1301 (1997)

    Article  Google Scholar 

  33. H. Napieczynska et al., NeuroImage 158, 112 (2017)

    Article  Google Scholar 

  34. E.L. Cole et al., Bioorg. Med. Chem. 25, 5407 (2017)

    Article  Google Scholar 

  35. X. Yang et al., Biomaterials 32, 4151 (2011)

    Article  Google Scholar 

  36. G. Nagy et al., Eur. J. Pharm. Sci. 106, 336 (2017)

    Article  Google Scholar 

  37. A.S. Johnson, presented at the International Conference on Computing in High-Energy Physics, Chicago, Illinois, United States (1998)

  38. R. Brun, F. Rademakers, Nucl. Instrum. Methods Phys. Res. A 389, 81 (1997)

    Article  ADS  Google Scholar 

  39. D.L. Alexoff et al., Nucl. Med. Biol. 38, 191 (2011)

    Article  Google Scholar 

  40. Radionuclide Decay Data, https://doi.org/publicinformation/radardecaydata.cfm

  41. C. Le Loirec, C. Champion, Nucl. Instrum. Methods Phys. Res. A 582, 644 (2007)

    Article  ADS  Google Scholar 

  42. C. Le Loirec, C. Champion, Nucl. Instrum. Methods Phys. Res. A 582, 654 (2007)

    Article  ADS  Google Scholar 

  43. W.W. Moses, Nucl. Instrum. Methods Phys. Res. A 648, S236 (2011)

    Article  ADS  Google Scholar 

  44. R. Montironi et al., Eur. Urol. Suppl. 16, 223 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingzhong Cao.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, W., Cao, X., Li, C. et al. Study of the effects of source type and magnetic field on the spatial distribution of positron annihilation events in PET/MRI applications. Eur. Phys. J. Plus 134, 85 (2019). https://doi.org/10.1140/epjp/i2019-12445-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12445-1

Navigation