Skip to main content
Log in

Modern finite-size criticality: Dirichlet and Neumann boundary conditions

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Finite-size critical systems defined on a parallel-plate geometry of finite extent along one single (z) direction with Dirichlet and Neumann boundary conditions at z = 0, L are analyzed in momentum space. We introduce a modified representation for the discrete eigenfunctions in a renormalized one-particle-irreducible (1PI) vertex part scalar field-theoretic framework using either massless or massive fields. The appearance of multiplicities in the Feynman rules to construct diagrams due to this choice of representation of the basis functions is discussed along with the modified normalization conditions. For nonvanishing external quasi-momenta, Dirichlet and Neumann boundary conditions are shown to be unified within a single formalism. We examine the dimensional crossover regimes for these and show a correspondence with those from antiperiodic and periodic boundary conditions. It is demonstrated that finite-size effects for Dirichlet and Neumann boundary conditions do not require surface fields necessarily but are implemented nontrivially from the Feynman rules involving only bulk terms in the Lagrangian. As an application, the critical exponents \(\eta\) and \(\nu\) are evaluated at least up to two-loop level through diagrammatic means. We show that the critical indices are the same as those from the bulk (infinite) system irrespective of the boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.G. Wilson, Phys. Rev. B 4, 3174 (1971)

    Article  ADS  Google Scholar 

  2. K.G. Wilson, Phys. Rev. B 4, 3184 (1971)

    Article  ADS  Google Scholar 

  3. K.G. Wilson, M.E. Fisher, Phys. Rev. Lett. 28, 240 (1972)

    Article  ADS  Google Scholar 

  4. K.G. Wilson, Phys. Rev. Lett. 28, 548 (1972)

    Article  ADS  Google Scholar 

  5. D.J. Amit, V. Martin-Mayor, Field Theory, the Renormalization Group and Critical Phenomena, 3rd edition (World Scientific, Singapore, 2005)

  6. L.M. Falicov, D.T. Pierce, S.D. Bader, R. Gronsky, K.B. Hathaway, H.J. Hopster, D.N. Lambeth, S.S.P. Parkin, G. Prinz, M. Salamon, I.K. Schuller, R.H. Victora, J. Mater. Res. 5, 1299 (1990)

    Article  ADS  Google Scholar 

  7. A. Monsen, J.E. Boschker, F. Macià, J.J. Wells, P. Nordblad, A. Kent, R. Mathieu, T. Tybell, E. Walström, J. Magn. & Magn. Mater. 369, 197 (2014)

    Article  ADS  Google Scholar 

  8. H.W. Diehl, in Phase Transitions and Critical Phenomena, edited by C. Domb, J.L. Lebowitz, Vol. 10 (Academic, London, 1986) p. 76

  9. A.M. Nemirovsky, K.F. Freed, Phys. Rev. B 31, 3161 (1985)

    Article  ADS  Google Scholar 

  10. A.M. Nemirovsky, K.F. Freed, J. Phys. A 18, 3275 (1985)

    Article  ADS  Google Scholar 

  11. A.M. Nemirovsky, K.F. Freed, J. Phys. A 19, 591 (1986)

    Article  ADS  Google Scholar 

  12. A.M Nemirovsky, Z.-G. Wang, K.F. Freed, Phys. Rev. B 34, 7886 (1996)

    Article  ADS  Google Scholar 

  13. A.M. Nemirovsky, Z.-G. Wang, K.F. Freed, Phys. Rev. B 36, 3755 (1987)

    Article  ADS  Google Scholar 

  14. A.M. Nemirovsky, in Field Theory, Quantum Gravity and Strings II, edited by H.J. de Vega, N. Sánchez, Vol. 280 (Springer-Verlag, Berlin, 1986) p. 229

  15. J.G. Brankov, D.M. Danchev, N.S. Tonchev, Theory of Critical Phenomena in Finite-Size Systems: Scaling and Quantum Effects (World Scientific, Singapore, 2000) chapt. 7

  16. H.B. Casimir, Proc. K. Ned. Akad. Wet. 51, 793 (1948)

    Google Scholar 

  17. Z. Borjan, P.J. Upton, Phys. Rev. Lett. 101, 125702 (2008)

    Article  ADS  Google Scholar 

  18. A. Gambassi, J. Phys.: Conf. Ser. 161, 012037 (2009)

    Google Scholar 

  19. C. Farina, Braz. J. Phys. 36, 1137 (2006)

    Article  ADS  Google Scholar 

  20. R. Garcia, M.H.W. Chan, Phys. Rev. Lett. 83, 1187 (1999)

    Article  ADS  Google Scholar 

  21. A. Ganshin, S. Scheidemantel, R. Garcia, M.H.W. Chan, Phys. Rev. Lett. 97, 075301 (2006)

    Article  ADS  Google Scholar 

  22. G. Bimonte, E. Calloni, G. Esposito, L. Milano, L. Rosa, Phys. Rev. Lett. 94, 180402 (2005)

    Article  ADS  Google Scholar 

  23. J. Goyon, A. Colin, G. Ovariez, A. Ajdari, L. Bocquet, Nature 454, 84 (2008)

    Article  ADS  Google Scholar 

  24. J. Goyon, A. Colin, L. Bocquet, Soft Matter 6, 2668 (2010)

    Article  ADS  Google Scholar 

  25. T.P. Chen, F.M. Gasparini, Phys. Rev. Lett. 40, 331 (1978)

    Article  ADS  Google Scholar 

  26. F.M. Gasparini, G. Agnolet, J.D. Reppy, Phys. Rev. B 29, 138 (1984)

    Article  ADS  Google Scholar 

  27. F.M. Gasparini, M.O. Kimball, K.P. Mooney, M. Diaz-Avila, Rev. Mod. Phys. 80, 1009 (2008)

    Article  ADS  Google Scholar 

  28. B.A. Scheibner, M.R. Meadows, R.C. Mockler, W.J. O'Sullivan, Phys. Rev. Lett. 43, 590 (1979)

    Article  ADS  Google Scholar 

  29. M.R. Meadows, B.A. Scheibner, R.C. Mockler, W.J. O'Sullivan, Phys. Rev. Lett. 43, 592 (1979)

    Article  ADS  Google Scholar 

  30. R. Höhmann, U. Kuhl, H.J. Stöckmann, J.D. Urbina, M.R. Dennis, Phys. Rev. E 79, 016203 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  31. S. Sandfeld, Z. Budrikis, S. Zapperi, D.F. Castellanos, J. Stat. Mech. 2, 02011 (2015)

    Google Scholar 

  32. X. Zhou, Z. Zhang, Int. J. Mol. Sci. 14, 24135 (2013)

    Article  Google Scholar 

  33. H. Chamati, J. Phys. A 41, 375002 (2008)

    Article  MathSciNet  Google Scholar 

  34. M.E. Fisher, in Critical Phenomena, Proceedings of the 1970 Enrico Fermi International School of Physics, Course LI, edited by M.S. Green (Academic, New York, 1971) p. 1

  35. M.E. Fisher, Rev. Mod. Phys. 46, 597 (1974)

    Article  ADS  Google Scholar 

  36. M.E. Fisher, M.N. Barber, Phys. Rev. Lett. 28, 1516 (1972)

    Article  ADS  Google Scholar 

  37. M.N. Barber, in Phase Transitions and Critical Phenomena, edited by C. Domb, J.L. Lebowitz, Vol. 8 (Academic, New York, 1983) p. 145

  38. V. Privman, in Finite Size Scaling and Numerical Simulations in Statistical Mechanics, edited by V. Privman (World Scientific, Singapore, 1990) p. 1

  39. V. Privman, M.E. Fisher, Phys. Rev. B 30, 322 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  40. A.M. Nemirovsky, K.F. Freed, J. Phys. A 18, L319 (1985)

    Article  ADS  Google Scholar 

  41. A.M. Nemirovsky, K.F. Freed, Nucl. Phys. B 270, 423 (1986)

    Article  ADS  Google Scholar 

  42. J.B. da Silva Jr., M.M. Leite, J. Math. Phys. 53, 043303 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  43. N.F. Svaiter, J. Math. Phys. 45, 4524 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  44. E. Brezin, J.C. Le Guillou, J. Zinn-Justin, Phys. Rev. D 8, 434 (1973)

    Article  ADS  Google Scholar 

  45. E. Brezin, J.C. Le Guillou, J. Zinn-Justin, in Phase Transitions and Critical Phenomena, edited by C. Domb, M.S. Green, Vol. 6 (Academic Press, London, 1976) p. 127

  46. P.R.S. Carvalho, M.M. Leite, J. Math. Phys. 54, 093301 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  47. A.A. Vladimirov, D.I. Kazakov, O.V. Tarasov, Sov. Phys. JETP 50, 521 (1979)

    ADS  Google Scholar 

  48. J. Naud, I. Nemenmann, M. Van Raamsdonk, V. Periwal, Nucl. Phys. B 540, 533 (1999)

    Article  ADS  Google Scholar 

  49. H. Boschi-Filho, C. Farina, Phys. Lett. A 205, 255 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  50. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals Series and Products (Academic Press, New York, 2000)

  51. M. Asorey, D. Garcia-Álvarez, J.M. Muñoz-Castañeda, J. Phys. A 40, 6667 (2007)

    Article  Google Scholar 

  52. M.M. Leite, A.M. Nemirovsky, M.D. Coutinho-Filho, J. Magn. & Magn. Mater. 104-107, 181 (1992)

    Article  ADS  Google Scholar 

  53. M.M. Leite, M. Sardelich, M.D. Coutinho-Filho, Phys. Rev. E 59, 2683 (1999)

    Article  ADS  Google Scholar 

  54. C.D. Fosco, N.F. Svaiter, J. Math. Phys. 42, 5185 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  55. M.I. Caicedo, N.F. Svaiter, J. Math. Phys. 45, 179 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  56. M.M. Leite, Phys. Rev. B 67, 104415 (2003)

    Article  ADS  Google Scholar 

  57. P.R.S. Carvalho, M.M. Leite, Ann. Phys. 324, 178 (2009)

    Article  ADS  Google Scholar 

  58. M.M. Leite, Phys. Rev. B 61, 14691 (2000)

    Article  ADS  Google Scholar 

  59. M.M. Leite, Phys. Rev. B 68, 052408 (2003)

    Article  ADS  Google Scholar 

  60. M.M. Leite, Phys. Lett. A 326, 281 (2004)

    Article  ADS  Google Scholar 

  61. M.M. Leite, Phys. Rev. B 72, 224432 (2005)

    Article  ADS  Google Scholar 

  62. P.R.S. Carvalho, M.M. Leite, Ann. Phys. 325, 151 (2010)

    Article  ADS  Google Scholar 

  63. C.F. Farias, M.M. Leite, J. Stat. Phys. 148, 972 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  64. M.I. Sena Jr., M.M. Leite, J. Phys. Conf. Ser. 574, 012170 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo M. Leite.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, M.V.S., da Silva Jr., J.B. & Leite, M.M. Modern finite-size criticality: Dirichlet and Neumann boundary conditions. Eur. Phys. J. Plus 134, 4 (2019). https://doi.org/10.1140/epjp/i2019-12347-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12347-2

Navigation