Skip to main content
Log in

A micropolar fluid model for hydrodynamics in the renal tubule

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The creeping flow of an incompressible micropolar fluid in a small-diameter permeable tube is studied. The fluid absorption at the tube walls is taken as a function of wall permeability and the pressure gradient across the tube wall. Closed-form solutions of the governing equations for the pressure, velocity and micro-rotation fields are obtained. Expressions describing variations in the axial volume flow rate, mean pressure, wall leakage flux, wall shear stress and the fractional re-absorption are derived. Effects of the wall permeability coefficient K , the micropolar parameter m and the coupling number N on flow variables are graphically presented and implications of results are discussed briefly. The obtained solutions are applied to the flow problem in the proximal renal tubule and probable values of the wall permeability parameter and the mean pressure drop in the tubule are obtained. It is found that the mean pressure drop in the proximal tubule is higher for the micropolar fluid than for the Newtonian fluid. It is also found that the volume flow rate of the micropolar fluid decreases exponentially as a function of the axial distance. This is a biologically significant result which is well accepted and is reported in the literature by earlier researchers too. The derived solutions coincide well with the existing solutions for the Newtonian fluid flow in a permeable tube as a special case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Robert I. Macey, Bull. Math. Biophys. 25, 303 (1963)

    Article  Google Scholar 

  2. Robert I. Macey, Bull. Math. Biophys. 27, 117 (1965)

    Article  Google Scholar 

  3. A.A. Kozinski, F.P. Schmidt, E.N. Lightfoot, Ind. Eng. Chem. Fundam. 9, 502 (1970)

    Article  Google Scholar 

  4. G. Radhakrishnamacharya, Peeyush Chandra, M.R. Kaimal, Bull. Math. Biol. 43, 151 (1981)

    Article  MathSciNet  Google Scholar 

  5. E.A. Marshall, E.A. Trowbridge, Bull. Math. Biol. 36, 457 (1974)

    Article  Google Scholar 

  6. Paul J. Palatt, Henry Sackin, Roger I. Tanner, J. Theor. Biol. 44, 287 (1974)

    Article  Google Scholar 

  7. P. Chaturani, T.R. Ranganatha, Acta Mech. 88, 11 (1991)

    Article  Google Scholar 

  8. A.M. Siddiqui, T. Haroon, M. Kahshan, M.Z. Iqbal, J. Comput. Theor. Nanosci. 12, 4319 (2015)

    Article  Google Scholar 

  9. A.M. Siddiqui, T. Haroon, M. Kahshan, Magnetohydrodynamics 51, 655 (2015)

    Article  Google Scholar 

  10. A.M. Siddiqui, T. Haroon, A. Shahzad, Appl. Math. Mech. 37, 361 (2016)

    Article  Google Scholar 

  11. T. Haroon, A.M. Siddiqui, A. Shahzad, Appl. Math. Sci. 10, 795 (2016)

    Google Scholar 

  12. A. Cemal Eringen, Theory of micropolar fluids, Technical report, DTIC Document (1965)

  13. S.C. Cowin, Phys. Fluids 11, 1919 (1968)

    Article  ADS  Google Scholar 

  14. Vijay Kumar Stokes, Theories of Fluids with Microstructure: An Introduction (Springer Science & Business Media, 2012)

  15. P. Chaturani, D. Biswas, Rheol. Acta 23, 435 (1984)

    Article  Google Scholar 

  16. P. Muthu, B.V. Rathish Kumar, Peeyush Chandra, J. Mech. Med. Biol. 8, 561 (2008)

    Article  Google Scholar 

  17. G. Ravi Kiran, G. Radhakrishnamacharya, O. Anwar Bég, J. Mech. Med. Biol. 17, 1750013 (2016)

    Article  Google Scholar 

  18. G.C. Shit, M. Roy, J. Mech. Med. Biol. 11, 643 (2011)

    Article  Google Scholar 

  19. Gerhard Giebisch, Ruth M. Klose, Gerhard Malnic, W. James Sullivan, Erich E. Windhager, J. Gen. Physiol. 47, 1175 (1964)

    Article  Google Scholar 

  20. Carl W. Gottschalk, Harvey Lect. 58, 99 (1962)

    Google Scholar 

  21. Carl W. Gottschalk, Folia Med. Neerland. 5, 11 (1962)

    Google Scholar 

  22. G. Malnic, Ruth M. Klose, G. Giebisch, Am. J. Physiol. Leg. Content 211, 529 (1966)

    Article  Google Scholar 

  23. Karl J. Ullrich, Bodil Schmidt-Nielsen, Roberta O’Dell, Gundula Pehling, Carl W. Gottschalk, William E. Lassiter, Margaret Mylle, Am. J. Physiol. Leg. Content 204, 527 (1963)

    Article  Google Scholar 

  24. Erich E. Windhager, Micropuncture Techniques and Nephron Function (Appleton-Century-Crofts, 1968)

  25. Carl W. Gottschalk, Margaret Mylle, Am. J. Physiol. Leg. Content 185, 430 (1956)

    Article  Google Scholar 

  26. R.B. Kelman, Bull. Math. Biophys. 24, 303 (1962)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kahshan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kahshan, M., Siddiqui, A.M. & Haroon, T. A micropolar fluid model for hydrodynamics in the renal tubule. Eur. Phys. J. Plus 133, 546 (2018). https://doi.org/10.1140/epjp/i2018-12410-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12410-6

Navigation