Skip to main content
Log in

Numerical study of natural convection in a cavity with discrete heat sources

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Natural convection heat transfer in a cavity has always attracted researchers interest because of its numerous applications in engineering, e.g., cooling of electronic parts, thermal insulators, buildings ventilation systems, solar collectors, and nuclear reactors. In general, due to favorable factors, such as process simplicity, cost-effectiveness, low noise, and the possibility of recovery, the process of natural convection has many uses in various industrial applications. In this study, a square cavity with air inside is considered. Three heaters are situated at the bottom wall, the top wall is maintained at a constant cold temperature, and the two side walls are insulated. The lattice Boltzmann method is used for simulation, and the overall goals are to optimize the installation location and heater length and also investigating the effects of the amplitude and oscillation period of heat flux fluctuation. The results indicate that increasing the difference between amplitudes and oscillation periods of heat flux in heaters causes the flow within the cavity to stabilize more quickly and also increases temperature oscillation due to larger amplitudes and periods. Also, in the cavity with three heaters, the average temperature of the middle heater remains unchanged relative to the case of constant heat flux. This research can be used in the design of an appropriate cooling system for electronic components to ensure effective and safe operational conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I.L. Ngo, C. Byon, J. Mech. Sci. Technol. 29, 2995 (2015)

    Article  Google Scholar 

  2. M.N.A.A. Siddiki, Int. J. Innov. Sci. Eng. Technol. 2, 2348 (2015)

    Google Scholar 

  3. S.C. Saha, M. Molla, M.A.I. Khan, J. Heat Mass Transf. 6, 1 (2012)

    Google Scholar 

  4. N.B. Cheikh, B.B. Beya, T. Lili, Int. Commun. Heat Mass Transf. 34, 369 (2007)

    Article  Google Scholar 

  5. S. Saha, G. Saha, M. Islam, J. Sci. Technol. 3, 29 (2008)

    Google Scholar 

  6. J.H. Bae, J.M. Hyun, Int. J. Therm. Sci. 43, 3 (2004)

    Article  Google Scholar 

  7. E.K. Lakhal, M. Hasnaoui, P. Vasseur, E. Bilgen, Numer. Heat Transf., Part A 27, 319 (1994)

    Article  ADS  Google Scholar 

  8. B. Abourida, M. Hasnaoui, S. Douamna, Numer. Heat Transf. A 36, 737 (1999)

    Article  ADS  Google Scholar 

  9. N. Nithyadevi, P. Kandaswamy, S. Sivasankaran, Math. Probl. Eng. 2006, 23425 (2006)

    Article  Google Scholar 

  10. F.Y. Zhao, D. Liu, G.F. Tang, Energy Convers. Manag. 48, 2461 (2007)

    Article  Google Scholar 

  11. B. Ghasemi, S.M. Aminossadati, Int. J. Therm. Sci. 49, 1 (2010)

    Article  Google Scholar 

  12. P.S. Mahapatra, N.K. Manna, K. Ghosh, A. Mukhopadhyay, Int. J. Heat Mass Transf. 83, 450 (2015)

    Article  Google Scholar 

  13. T. Naffouti, J. Zinoubi, R. Ben-Maad, Int. J. Therm. Technol. 3, 146 (2013)

    Google Scholar 

  14. T. Naffouti, R. Djebali, Comput. Model. Eng. Sci. 88, 211 (2012)

    Google Scholar 

  15. M.A. Mussa, S. Abdullah, C.N. Azwadi, N. Muhamad, Comput. Fluids 44, 162 (2011)

    Article  MathSciNet  Google Scholar 

  16. T. Naffouti, J. Zinoubi, N.A. Sidik, R.B. Maad, J. Appl. Fluid Mech. 9, 419 (2016)

    Article  Google Scholar 

  17. K.M. Gangawane, R.P. Bharti, S. Kumar, Heat Transf. Eng. 37, 507 (2016)

    Article  ADS  Google Scholar 

  18. M. Nazari, H. Shokri, M.H. Kayhani, J. Braz. Soc. Mech. Sci. Eng. 37, 149 (2015)

    Article  Google Scholar 

  19. M. Jami, A. Mezrhab, M.H. Bouzidi, Lallemand, Int. J. Therm. Sci. 46, 38 (2007)

    Article  Google Scholar 

  20. S. Succi, The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond (Oxford University Press, 2001)

  21. J. Latt, Choice of units in lattice Boltzmann simulations (2008) https://doi.org/lbmethod.org/_media/howtos:lbunits.pdf

  22. O. Aydin, W.J. Yang, Int. J. Numer. Methods Heat Fluid Flow 10, 518 (2000)

    Article  Google Scholar 

  23. G. Saha, S. Saha, M.Q. Islam, M.R. Akhanda, J. Nav. Archit. Mar. Eng. 4, 1 (2007)

    Article  Google Scholar 

  24. B. Calcagni, F. Marsili, M. Paroncini, Appl. Therm. Eng. 25, 2522 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marzieh Rezazadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doostali, A., Rezazadeh, M. Numerical study of natural convection in a cavity with discrete heat sources. Eur. Phys. J. Plus 133, 511 (2018). https://doi.org/10.1140/epjp/i2018-12323-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12323-4

Navigation