Skip to main content
Log in

A comprehensive numerical study of space-time fractional bioheat equation using fractional-order Legendre functions

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The determination of a temperature field within the living tissues and especially during the thermal therapies requires a comprehensive modeling due to the involved complex heat transfer mechanisms. Anomalous structure of the blood vessels, history-dependent heat transfer, temperature-dependent metabolic heat generation and various types of available thermal therapy procedures are some of the difficulties arising for a realistic modeling. To tackle the mentioned problem, in the present investigation the general form of the space-time fractional heat conduction equation with locally variable initial condition and time-dependent boundary conditions is solved. Moreover, the heat generation source term is assumed to be a function of both time and space. A computational method based on the fractional-order Legendre functions (F-OLFs) and Galerkin method is proposed to solve the problem. The main advantage of the proposed method is that it obtains a global solution for the problem. In addition, the method reduces the problem under consideration to a simpler problem that consists of solving a system of nonlinear algebraic equations. The developed mathematical method is applied to three common clinical thermal therapies: instantaneous and gradual internal magnetic heat generation and skin laser exposure. The effect of various physiological and clinical parameters is investigated. According to the obtained results, the temperature field is a strong function of the time and space fractional order. Additionally, it is shown that the instantaneous heat source which is commonly utilized in the literature leads to substantial different results in comparison to the more realistic case of gradually increasing heat generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Sierociuk, A. Dzielinski, G. Sarwas, I. Petras, I. Podlubny, T. Skovranek, Philos. Trans. R. Soc. 371, 20120146 (2013)

    Article  ADS  Google Scholar 

  2. A. Dzielinski, D. Sierociuk, G. Sarwas, Bull. Pol. Acad. Sci. Tech. Sci. 58, 583 (2010)

    Google Scholar 

  3. K.B. Oldham, J. Spanier, The Fractional Calculus (Academic Press, New York, 1974)

  4. E. Hesameddini, A. Rahimi, E. Asadollahifard, Commun. Nonlinear Sci. Numer. Simul. 34, 154 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  5. A. Saadatmandi, M. Dehghan, Comput. Math. Appl. 59, 1326 (2010)

    Article  MathSciNet  Google Scholar 

  6. E.H. Doha, A.H. Bhrawy, S.S. Ezz-Eldien, Appl. Math. Model. 36, 4931 (2012)

    Article  MathSciNet  Google Scholar 

  7. E.H. Doha, A.H. Bhrawy, S.S. Ezz-Eldien, Comput. Math. Appl. 62, 2364 (2011)

    Article  MathSciNet  Google Scholar 

  8. S. Kazem, Abbasbandy, S. Kumar, Appl. Math. Model. 37, 5498 (2013)

    Article  MathSciNet  Google Scholar 

  9. A. Ahmadian, M. Suleiman, S. Salahshour, Abstr. Appl. Anal. 2013, 505903 (2013)

    Google Scholar 

  10. D. Baleanu, A.H. Bhrawy, T.M. Taha, Abstr. Appl. Anal. 2013, 546502 (2013)

    Google Scholar 

  11. M. Ishteva, L. Boyadjiev, C. R. Acad. Bulg. Sci. 58, 1019 (2005)

    Google Scholar 

  12. M. Ishteva, L. Boyadjiev, R. Scherer, Math. Sci. Res. 9, 161 (2005)

    MathSciNet  Google Scholar 

  13. M.H. Heydari, M.R. Hooshmandasl, F.M. Maalek Ghaini, Comput. Math. Appl. 68, 269 (2014)

    Article  MathSciNet  Google Scholar 

  14. M.H. Heydari, M.R. Hooshmandasl, F. Mohammadi, Appl. Math. Comput. 234, 267 (2014)

    MathSciNet  Google Scholar 

  15. M.H. Heydari, M.R. Hooshmandasl, F. Mohammadi, Adv. Appl. Math. Mech. 6, 247 (2014)

    Article  MathSciNet  Google Scholar 

  16. M.H. Heydari, M.R. Hooshmandasl, F.M. Maalek Ghaini, C. Cattani, Phys. Lett. A 379, 71 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  17. M.H. Heydari, M.R. Hooshmandasl, F.M. Maalek Ghaini, C. Cattani, Appl. Math. Comput. 286, 139 (2016)

    MathSciNet  Google Scholar 

  18. M.H. Heydari, M.R. Hooshmandasl, F.M. Maalek Ghaini, M. Li, Adv. Math. Phys. 2013, 482083 (2013)

    Article  Google Scholar 

  19. M.H. Heydari, M.R. Hooshmandasl, A. Shakiba, C. Cattani, Tbilisi Math. J. 9, 143 (2016)

    Article  MathSciNet  Google Scholar 

  20. M.H. Heydari, Z. Avazzadeh, Asian J. Control 20, 1 (2018)

    Article  MathSciNet  Google Scholar 

  21. M.H. Heydari, Z. Avazzadeh, Comput. Appl. Math. https://doi.org/10.1007/s40314-018-0580-z (2018)

  22. S. Hassanpour, A. Saboonchi, J. Therm. Biol. B 62, 150 (2016)

    Article  Google Scholar 

  23. N. Afrin, Y. Zhang, J.K. Chen, Int. J. Heat Mass Transfer 54, 2419 (2011)

    Article  Google Scholar 

  24. R.S. Damor, S. Kumar, A.K. Shukla, Springer Plus 5, 111 (2016)

    Article  Google Scholar 

  25. L.L. Ferras, N.J. Ford, M.L. Morgado, J.M. Nobrega, M.S. Rebelo, Fractional Calculus Appl. Anal. 18, 1080 (2015)

    MathSciNet  Google Scholar 

  26. F.K. Nakayama, Int. J. Heat Mass Transfer 51, 3190 (2008)

    Article  Google Scholar 

  27. Z. Cui, G. Chen, R. Zhang, Adv. Mater. Res. 1049-1050, 1471 (2012)

    Article  Google Scholar 

  28. H.R. Ghazizadeh, M. Maerefat, A. Azimi, Modeling non-Fourier behavior of bioheat transfer by fractional single-phase-lag heat conduction constitutive model, in Proceedings of the 4th IFAC Workshop on Fractional Differentiation and its Applications, University of Extremadura Badajoz, Spain, 2010

  29. Y. Zhang, Appl. Math. Comput. 215, 524 (2009)

    MathSciNet  Google Scholar 

  30. J. Singh, P.K. Gupta, K.N. Rai, Math. Comput. Modell. 54, 2316 (2011)

    Article  Google Scholar 

  31. X. Jiang, H. Qi, J. Phis. A 45, 485 (2012)

    Google Scholar 

  32. X.Y. Jiang, M.Y. Xu, Physica A 389, 3368 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  33. X.H. Ying, J.X. Yun, Chin. Phys. B 24, 340 (2015)

    Google Scholar 

  34. H. Askarizadeh, H. Ahmadikia, Heat Mass Transf. 50, 1673 (2014)

    Article  ADS  Google Scholar 

  35. M.A. Ezzat, N.S. Al Sowayan, Z.I.A. Al-Muhiameed, S.M. Ezzat, Heat Mass Transf. 50, 907 (2014)

    Article  ADS  Google Scholar 

  36. D. Kumar, K.N. Rai, J. Therm. Biol. 67, 49 (2017)

    Article  Google Scholar 

  37. I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, 1999)

  38. S. Kazem, S. Abbasbandy, Sunil Kumar, Appl. Math. Modell. 37, 5498 (2013)

    Article  Google Scholar 

  39. M.R. Hooshmandasl, M.H. Heydari, C. Cattani, Eur. Phys. J. Plus 131, 268 (2016)

    Article  Google Scholar 

  40. C. Canuto, M. Hussaini, A. Quarteroni, T. Zang, Spectral Methods in Fluid Dynamics (Springer, 1988)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Heydari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roohi, R., Heydari, M.H., Aslami, M. et al. A comprehensive numerical study of space-time fractional bioheat equation using fractional-order Legendre functions. Eur. Phys. J. Plus 133, 412 (2018). https://doi.org/10.1140/epjp/i2018-12204-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12204-x

Navigation