Skip to main content

Advertisement

Log in

Theoretical study on a graphene triboelectric nanogenerator with metal contacts

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Charge transfer between graphene and a metal during contact electrification is theoretically investigated herein using a double graphene triboelectric nanogenerator (TENG) as a model system. This contact-separation process has been widely used in energy harvesting, where maximization of the tribo-charge density from an efficiency point of view is preferred. Herein, we introduce an analytical approach for calculating the Fermi energy shift with respect to the graphene conical point as a function of the graphene-metal distance with a change in the work function between the metal and graphene. This theoretical model for understanding the charge transfer between graphene and the metal can potentially be used to enhance device performance of two-dimensional energy harvesting systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W.R. Harper, Contact and Frictional Electrification, 1st edition (Springer, Morgan Hill, CA, 1998)

  2. R.G. Horn, D.T. Smith, Science 256, 5055 (1992)

    Article  Google Scholar 

  3. R.G. Horn, D.T. Smith, A. Grabbe, Nature 366, 442 (1993)

    Article  ADS  Google Scholar 

  4. C.-Y. Liu, A.J. Bard, Nat. Mater. 7, 505 (2008)

    Article  ADS  Google Scholar 

  5. M.M. Apodaca, P.J. Wesson, K.J. Bishop, M.A. Ratner, B.A. Grzibowski, Angew. Chem. Int. Ed. 49, 5 (2010)

    Article  Google Scholar 

  6. H.T. Baytekin, A.Z. Patashinski, M. Branicki, B. Baytekin, S. Soh, B.A. Grzibowski, Science 333, 6040 (2011)

    Article  Google Scholar 

  7. F.-R. Fan, Z.-Q. Tian, Z.L. Wang, Nano Energy 1, 2 (2012)

    Article  Google Scholar 

  8. Y. Yang, Z. Hulin, Z. Xiandai, Y. Fang, Y. Ruomeng, Z. Yue, Z.L. Wang, ACS Appl. Mater. Interfaces 6, 5 (2014)

    Google Scholar 

  9. S. Wang, S. Niu, J. Yang, L. Lin, Z.L. Wang, ACS Nano 8, 12 (2014)

    Google Scholar 

  10. J. Yang, J. Chen, Y. Yang, H. Zhang, W. Yang, P. Bai, Y. Su, Z.L. Wang, Adv. Energy Mater. 4, 6 (2014)

    Google Scholar 

  11. J. Bae, J. Lee, S. Kim, J. Ha, B.-S. Lee, Y. Park, C. Choong, J.-B. Kim, Z.L. Wang, Nat. Commun. 5, 4929 (2014)

    Article  Google Scholar 

  12. Y. Yang, G. Zhu, H. Zhang, J. Chen, X. Zhong, Z.-H. Lin, Y. Su, P. Bai, X. Wen, Z.L. Wang, ACS Nano 7, 10 (2013)

    Google Scholar 

  13. G. Zhu, Y. Su, P. Bai, J. Chen, Q. Jing, W. Yang, Z.L. Wang, ACS Nano 8, 6 (2014)

    Google Scholar 

  14. Y. Su, X. Wen, G. Zhu, Z.L. Wang, Nano Energy 9, 186 (2014)

    Article  Google Scholar 

  15. G. Zhu, Z.-H. Lin, Q. Jing, P. Bai, C. Pan, Y. Yang, Y. Zhou, Z.L. Wang, Nano Lett. 13, 2 (2013)

    Article  Google Scholar 

  16. P. Bai, G. Zhu, Z.-H. Lin, Q. Jing, J. Chen, G. Zhang, J. Ma, Z.L. Wang, ACS Nano 7, 4 (2013)

    Google Scholar 

  17. S. Niu, Y. Liu, S. Wang, Y.S. Zhou, Y. Hu, Z.L. Wang, Adv. Mater. 25, 43 (2013)

    Google Scholar 

  18. S.M. Niu, S. Wang, L. Lin, Y. Liu, Y.S. Zhou, Y. Hu, Z.L. Wang, Energy Environ. Sci. 6, 12 (2013)

    Article  Google Scholar 

  19. G. Giovannetti, P.A. Khomyakov, G. Brocks, V.M. Karpan, J. van den Brink, P.J. Kelly, Phys. Rev. Lett. 101, 026803 (2008)

    Article  ADS  Google Scholar 

  20. V. Panchal, R. Pearce, R. Yakimova, A. Tzalenchuk, O. Kazakova, Sci. Rep. 3, 2597 (2013)

    Article  ADS  Google Scholar 

  21. J. Cazaux, Appl. Phys. Lett. 98, 013109 (2011)

    Article  ADS  Google Scholar 

  22. Z. Wang, R. Scharstein, Chem. Phys. Lett. 489, 229 (2010)

    Article  ADS  Google Scholar 

  23. C. Liu, Z. Yu, D. Neff, A. Zhamu, B.Z. Jang, Nano Lett. 10, 4863 (2010)

    Article  ADS  Google Scholar 

  24. S. Kim, M.K. Gupta, K.Y. Lee, A. Sohn, T.Y. Kim, K.-S. Shin, D. Kim, S.K. Kim, K.H. Lee, H.-J. Shin, D.-W. Kim, S.-W. Kim, Adv. Mater. 26, 3918 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong Min Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.M. Theoretical study on a graphene triboelectric nanogenerator with metal contacts. Eur. Phys. J. Plus 133, 334 (2018). https://doi.org/10.1140/epjp/i2018-12189-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12189-4

Navigation