Skip to main content
Log in

Thermonuclear supernovae and cosmology

  • Review
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Bright and homogeneous, thermonuclear, or type Ia, supernovae (SNeIa) are our best extragalactic distance indicators. Since the 60s, SNeIa have been used as cosmological tools, initially, to estimate the current expansion rate of the Universe, the Hubble constant. Decades ago SNeIa were discovered by chance, in many cases by amateurs. Advances in the instrumentation, techniques and new observational strategies allowed in the 80s to discover SNe in scheduled surveys. Moreover, through calibration relations, a high precision in extragalactic distance determinations was achieved, allowing SNIa observations to reveal the dynamics of the Universe. The Nobel prize in Physics in 2011 was awarded to the leaders of two independent teams “for the discovery of the accelerating expansion of the Universe through observations of distant supernovae”. This is a brief and incomplete story of SNeIa as cosmological tools. In the Madrasah of Granada (Spain), built in 1349 by the Nasrid monarch Yosuf the 1st, Astronomy was one of the disciplines included in the studies. On the Madrasah walls, a calligraphic decoration reads: “make study shine like stars”. It is a good motto for our 4th Azarquiel School of Astronomy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Branch, G.A. Tammann, Annu. Rev. Astron. Astrophys. 30, 359 (1992)

    Article  ADS  Google Scholar 

  2. F. Hoyle, W.A. Fowler, Astrophys. J. 132, 565 (1960)

    Article  ADS  Google Scholar 

  3. M.M. Phillips, Astrophys. J. Lett. 413, L105 (1993)

    Article  ADS  Google Scholar 

  4. M.M. Phillips, P. Lira, N.B. Suntzeff et al., Astron. J. 118, 1766 (1999)

    Article  ADS  Google Scholar 

  5. G. Goldhaber et al., Astrophys. J. 558, 359 (2001)

    Article  ADS  Google Scholar 

  6. A. Riess et al., Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  7. S. Perlmutter et al., Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  8. A. Riess et al., Astrophys. J. 607, 665 (2004)

    Article  ADS  Google Scholar 

  9. M. Hamuy, M.M. Phillips, N.B. Suntzeff, R.A. Schommer, J. Maza, R. Aviles, Astron. J. 112, 2391 (1996)

    Article  ADS  Google Scholar 

  10. D. Branch, W. Romanishin, E. Baron, Astrophys. J. 465, 73 (1996)

    Article  ADS  Google Scholar 

  11. M. Sullivan et al., Mon. Not. R. Astron. Soc. 406, 782 (2010)

    ADS  Google Scholar 

  12. H. Lampeitl et al., Astrophys. J. 722, 566 (2010)

    Article  ADS  Google Scholar 

  13. M. Betoule et al., Astron. Astrophys. 568, A22 (2014)

    Article  Google Scholar 

  14. M.-E. Moreno-Raya et al., Mon. Not. R. Astron. Soc. 462, 1281 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inma Domínguez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domínguez, I., Galbany, L. Thermonuclear supernovae and cosmology. Eur. Phys. J. Plus 133, 323 (2018). https://doi.org/10.1140/epjp/i2018-12176-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12176-9

Navigation