Skip to main content
Log in

PS2.M: Looking for a potassium biosensor

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

DNA sequences with guanine repeats are able to fold as G-quadruplex (G4) structures. This is an alternative DNA conformation in which four guanines are arranged as a tetrad, the structural unit of G4; two or more stacked tetrads form a G4 structure. The hydrogen bonds characterizing G4 are called Hoogsten bonds but more interactions are involved in the G4 structure stabilization. For example, cations work as G4 stabilizers and their role is not restricted to the structural folding. They coordinate the guanines’ carbonilic oxygens located towards the hydrophobic channel of the G4 inner structure. This feature suggests that the G4 could work as a cation biosensor. Biological media are characterized by the simultaneous presence of K+ and Na+ exhibiting different affinities and thus promoting different topological arrangements in the folding solution. In this article we explore the possibility of using PS2.M, an 18 base long synthetic oligonucleotide, as a detector of K+ at concentrations in the range 0mM to 10mM. Our intent is therefore to study a biosensor that is made of the G4 sequence only, without intervention of other coupled molecules. As with most guanine-rich oligonucleotides, also PS2.M shows different structures depending on the folding conditions. In agreement with the literature data, our results outline the expected behavior and the key role of K+ and Na+ in promoting the folding, with Na+ promoting the antiparallel structure formation of PS2.M, even at high concentrations. On the other hand, if PS2.M is folded in 10mM to 100mM KCl solutions, the parallel conformation sets in becoming more and more relevant as concentration grows. In a complex solution of G4 in the presence of both K+ and Na+ ions, spectra display the coexistence of parallel, antiparallel and mixed type conformations. Results show that the CD spectra values at this wavelength can be diagrammed as a function of the K+ concentration to construct a biosensor calibration curve. In conclusion, given a Na+ concentration in the range 50mM to 80mM and K+ concentration in the range 0mM to 10mM, the measured CD signal at 263.6nm permits a K+ concentration measurement with a resolution of ∼ 1 mM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Burge, G.N. Parkinson, P. Hazel, A.K. Todd, S. Neidle, Nucleic Acids Res. 34, 5402 (2006)

    Article  Google Scholar 

  2. S.K. Mishra, A. Tawani, A. Mishra, A. Kumar, Sci. Rep. 6, 38144 (2016)

    Article  ADS  Google Scholar 

  3. B. Ivar, Biochem. Z. 26, 293 (1910)

    Google Scholar 

  4. M. Gellert, M.N. Lipsett, D.R. Davies, Proc. Natl. Acad. Sci. U.S.A. 48, 2013 (1962)

    Article  ADS  Google Scholar 

  5. B. Ruttkay-Nedecky, J. Kudr, L. Nejdl, D. Maskova, R. Kizek, V. Adam, Molecules 18, 14760 (2013)

    Article  Google Scholar 

  6. C.E. Pearson, R.R. Sinden, Curr. Opin. Struct. Biol. 8, 321 (1998)

    Article  Google Scholar 

  7. G.N. Parkinson, M.P.H. Lee, S. Neidle, Nature 417, 876 (2002)

    Article  ADS  Google Scholar 

  8. O. Doluca, J.M. Withers, V.V. Filichev, Chem. Rev. 113, 3044 (2013)

    Article  Google Scholar 

  9. N. Maizels, Nat. Struct. Mol. Biol. 13, 1055 (2006)

    Article  Google Scholar 

  10. N. Maizels, L.T. Gray, Plos Genet. 9, e1003468 (2013)

    Article  Google Scholar 

  11. R.D. Gray, J. Li, J.B. Chaires, J. Phys. Chem. B 113, 2676 (2009)

    Article  Google Scholar 

  12. G.N. Parkinson, R. Ghosh, S. Neidle, Biochemistry 46, 2390 (2007)

    Article  Google Scholar 

  13. P.R. Majhi, R.H. Shafer, Biopolymers 82, 558 (2006)

    Article  Google Scholar 

  14. D. Bhattacharyya, G. Mirihana Arachchilage, S. Basu, Front. Chem. 4, 38 (2016)

    Article  Google Scholar 

  15. W. Liu, H. Zhu, B. Zheng, S. Cheng, Y. Fu, W. Li, T.C. Lau, H. Liang, Nucleic Acids Res. 40, 4229 (2012)

    Article  Google Scholar 

  16. D.Z. Yang, K. Okamoto, Future Med. Chem. 2, 619 (2010)

    Article  Google Scholar 

  17. H.Z. He, D.S.H. Chan, C.H. Leung, D.L. Ma, Nucleic Acids Res. 41, 4345 (2013)

    Article  Google Scholar 

  18. N. Shahbazi, S. Hosseinkhani, K. Khajeh, B. Ranjbar, Biopolymers 107, e23028 (2017)

    Article  Google Scholar 

  19. P. Travascio, Y. Li, D. Sen, Chem. Biol. 5, 505 (1998)

    Article  Google Scholar 

  20. G. Wang, L. Chen, Y. Zhu, X. He, G. Xu, X. Zhang, Biosensors Bioelectron. 61, 410 (2014)

    Article  Google Scholar 

  21. D.M. Kong, L.L. Cai, J.H. Guo, J. Wu, H.X. Shen, Biopolymers 91, 331 (2009)

    Article  Google Scholar 

  22. X. Cheng, X. Liu, T. Bing, Z. Cao, D. Shangguan, Biochemistry 48, 7817 (2009)

    Article  Google Scholar 

  23. S. Croci, L. Bruni, S. Bussolati, M. Castaldo, M. Dondi, Cancer Cell Int. 11, 30 (2011)

    Article  Google Scholar 

  24. L. Bruni, A.A. Babarinde, I. Ortalli, S. Croci, Cancer Cell Int. 14, 77 (2014)

    Article  Google Scholar 

  25. S. Paramasivan, I. Rujan, P.H. Bolton, Methods 43, 324 (2007)

    Article  Google Scholar 

  26. V. Viglasky, L. Bauer, K. Tluckova, Biochemistry 49, 2110 (2010)

    Article  Google Scholar 

  27. A. Bugaut, S. Balasubramanian, Biochemistry 47, 689 (2008)

    Article  Google Scholar 

  28. P.C. Wei, Z.F. Wang, W.T. Lo, M.I. Su, J.Y. Shew, T.C. Chang, W.H. Lee, Nucleic Acids Res. 41, 1533 (2013)

    Article  Google Scholar 

  29. M. Lu, Q. Guo, N. Kallenbach, Biochemistry 32, 598 (1993)

    Article  Google Scholar 

  30. T. Li, E. Wang, S. Dong, Anal. Chem. 82, 7576 (2010)

    Article  Google Scholar 

  31. X. Sun, Q. Li, J. Xiang, L. Wang, X. Zhang, L. Lan, S. Xu, F. Yang, Y. Tang, Analyst 142, 3352 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simonetta Croci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruni, L., Manghi, M. & Croci, S. PS2.M: Looking for a potassium biosensor. Eur. Phys. J. Plus 133, 337 (2018). https://doi.org/10.1140/epjp/i2018-12155-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12155-2

Navigation