Skip to main content
Log in

The modified communication between the helicity amplitudes and the electromagnetic form factor of a nucleon based on the nonrelativistic constituent quark model

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this paper, as a first step, the baryon resonance spectrum and the hyperfine structure of the baryon by using a simple approach based on the Gursey-Radicati mass formula (GR) are studied. As a second step, since the electromagnetic transition between nucleon and excited baryons has long been recognized as an important source of information for understanding strong interactions in the domain of quark confinement, we performed calculation of the helicity amplitudes and electric and magnetic transition form factors for the electromagnetic excitation of nucleon resonances in the nonrelativistic quark model. In this paper, we present a new model for the communication between the electromagnetic transition form factors and helicity amplitudes. These have shown the best communication between helicity amplitudes and electromagnetic form factors, with preservation of the unit. We present new results concerning electromagnetic form factors of the nucleon using a nonrelativistic version of the hypercentral constituent quark model and nonrelativistic current. Presenting our results in the range \( 0\leq Q^2\) (GeV2 \( \leq 5\) in comparison with the predictions obtained in other relativistic and nonrelativistic quark models, our results lead to an overall better agreement with the experimental data, especially in the medium Q2 range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jis-Jun Wu, R. Molina, E. Oset, B.S. Zou, Phys. Rev. Lett. 105, 232001 (2010)

    Article  ADS  Google Scholar 

  2. F.E. Close, An Introduction to Quarks and Partons (Academic Press, New York, 1978)

  3. L.A. Copley, G. Karl, E. Obryk, Nucl. Phys. B 13, 303 (1969)

    Article  ADS  Google Scholar 

  4. R.P. Feynman, M. Kislinger, F. Ravndal, Phys. Rev. D 3, 2706 (1971)

    Article  ADS  Google Scholar 

  5. F.E. Close, Z. Li, Phys. Rev. D 42, 2194 (1990)

    Article  ADS  Google Scholar 

  6. R. Bijker, F. Iachello, A. Leviatan, Ann. Phys. (N.Y.) 236, 69 (1994)

    Article  ADS  Google Scholar 

  7. M. Aiello et al., Phys. Lett. B 387, 215 (1996)

    Article  ADS  Google Scholar 

  8. Z. Dziembowski, M. Fabre de la Ripelle, G.A. Miller, Phys. Rev. C 53, R2038 (1996)

    Article  ADS  Google Scholar 

  9. N. Isgur, G. Karl, Phys. Rev. D 18, 4187 (1978)

    Article  ADS  Google Scholar 

  10. N. Isgur, G. Karl, Phys. Rev. D 19, 2653 (1979)

    Article  ADS  Google Scholar 

  11. N. Isgur, G. Karl, Phys. Rev. D 20, 1191 (1979)

    Article  ADS  Google Scholar 

  12. M.M. Giannini, Rep. Prog. Phys. 54, 453 (1991)

    Article  ADS  Google Scholar 

  13. G.S. Bali et al., Phys. Rev. D 62, 054503 (2000)

    Article  ADS  Google Scholar 

  14. G.S. Bali, Phys. Rep. 343, 1 (2001)

    Article  ADS  Google Scholar 

  15. C. Alexandrou, P. de Forcrand, O. Jahn, Nucl. Phys. Proc. Suppl. 119, 667 (2003)

    Article  ADS  Google Scholar 

  16. V.D. Burkert, T.S.H. Lee, Int. J. Mod. Phys. E 13, 108 (2004)

    Article  Google Scholar 

  17. F. Halzen, A.D. Martin, Quarks and Leptons (John Wiley & Sons, New York, 1984)

  18. I.G. Aznauryan et al., Int. J. Mod. Phys. E 22, 1330015 (2013)

    Article  ADS  Google Scholar 

  19. P. Stoler, Nucl. Phys. A 532, 377 (1991)

    Article  ADS  Google Scholar 

  20. L. Zhenping, D. Yubing, M. Weihsing, J. Phys. G 23, 151 (1997)

    Article  ADS  Google Scholar 

  21. CLAS Collaboration (I.G. Aznauryan et al.), Phys. Rev. C 80, 055203 (2009)

    Article  Google Scholar 

  22. I.G. Aznauryan et al., Phys. Rev. C 78, 045209 (2008)

    Article  ADS  Google Scholar 

  23. S. Capstick, B.D. Keister, Phys. Rev. D 51, 3598 (1995)

    Article  ADS  Google Scholar 

  24. S. Parsaei, A.A. Rajabi, Eur. Phys. J. Plus 132, 413 (2017)

    Article  Google Scholar 

  25. M.M. Giannini, E. Santopinto, A. Vassallo, Eur. Phys. J. A 25, 241 (2005)

    Article  ADS  Google Scholar 

  26. F. Gürsey, L.A. Radicati, Phys. Rev. Lett. 13, 173 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  27. E. Santopinto, F. Iachello, M.M. Giannini, Eur. Phys. J. A 1, 307 (1998)

    Article  ADS  Google Scholar 

  28. N. Salehiy, A.A. Rajabi, Z. Ghalenovi, Acta Phys. Pol. B 42, 1247 (2011)

    Article  Google Scholar 

  29. S.M. Ikhdair, R. Sever, Int. J. Theor. Phys. 46, 1643 (2007)

    Article  Google Scholar 

  30. M. Aslanzadeh, A.A. Rajabi, Int. J. Mod. Phys. E 24, 1550032 (2015)

    Article  ADS  Google Scholar 

  31. A.A. Rajabi, Few-Body Syst. 37, 197 (2005)

    Article  ADS  Google Scholar 

  32. R. Bijker, A. Leviatan, AIP Conf. Proc. 412, 519 (1997)

    ADS  Google Scholar 

  33. Z.P. Li, V. Burkert, Zh. Li, Phys. Rev. D 46, 70 (1992)

    Article  ADS  Google Scholar 

  34. S. Capstick, G. Karl, Phys. Rev. D 41, 2768 (1990)

    ADS  Google Scholar 

  35. S. Capstick, W. Roberts, Prog. Part. Nucl. Phys. 45, S241 (2000)

    Article  ADS  Google Scholar 

  36. P. Stoler, Phys. Rep. 226, 103 (1993)

    Article  ADS  Google Scholar 

  37. M. Aiello, M.M. Gianniniy, E. Santopinto, J. Phys. G: Nucl. Part. Phys. 24, 753 (1998)

    Article  ADS  Google Scholar 

  38. M. Warns, H. Schroder, W. Pfeil, H. Rollnik, Z. Phys. C Part. Fields 45, 627 (1990)

    Article  Google Scholar 

  39. M. De Sanctis, M.M. Giannini, E. Santopinto, A. Vassallo, Phys. Rev. C 76, 062201 (2007)

    Article  ADS  Google Scholar 

  40. M. De Sanctis, M.M. Giannini, L. Repetto, E. Santopinto, Phys. Rev. C 62, 025208 (2000)

    Article  ADS  Google Scholar 

  41. W. Bartel et al., Nucl. Phys. B 58, 429 (1973)

    Article  ADS  Google Scholar 

  42. T. Janssens et al., Phys. Rev. 142, 922 (1966)

    Article  ADS  Google Scholar 

  43. Ch. Berger et al., Phys. Lett. B 35, 87 (1971)

    Article  ADS  Google Scholar 

  44. R.C. Walker et al., Phys. Rev. D 49, 5671 (1994)

    Article  ADS  Google Scholar 

  45. A.F. Sill et al., Phys. Rev. D 48, 29 (1993)

    Article  ADS  Google Scholar 

  46. J. Litt et al., Phys. Lett. B 31, 40 (1970)

    Article  ADS  Google Scholar 

  47. G. Kubon et al., Phys. Lett. B 524, 26 (2002)

    Article  ADS  Google Scholar 

  48. P. Markowitz et al., Phys. Rev. C 48, 5 (1993)

    Article  ADS  Google Scholar 

  49. A. Lung et al., Phys. Rev. Lett. 70, 718 (1993)

    Article  ADS  Google Scholar 

  50. H. Anklin et al., Phys. Lett. B 336, 313 (1994)

    Article  ADS  Google Scholar 

  51. W. Xu et al., Phys. Rev. C 67, 012201 (2003)

    Article  ADS  Google Scholar 

  52. O. Gayou et al., Phys. Rev. C 64, 038202 (2001)

    Article  ADS  Google Scholar 

  53. Jefferson Lab Hall A Collaboration (O. Gayou et al.), Phys. Rev. Lett. 88, 092301 (2002)

    Article  Google Scholar 

  54. Jefferson Lab Hall A Collaboration (M.K. Jones et al.), Phys. Rev. Lett. 84, 1398 (2000)

    Article  ADS  Google Scholar 

  55. A1 Collaboration (T. Pospischil et al.), Eur. Phys. J. A 12, 125 (2001)

    Article  Google Scholar 

  56. C.F. Perdrisat, V. Punjabi, M. Vanderhaeghen, Prog. Part. Nucl. Phys. 59, 694 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Parsaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parsaei, S., Akbar Rajabi, A. The modified communication between the helicity amplitudes and the electromagnetic form factor of a nucleon based on the nonrelativistic constituent quark model. Eur. Phys. J. Plus 133, 265 (2018). https://doi.org/10.1140/epjp/i2018-12095-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12095-9

Navigation