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Abstract. This study addresses the stagnation flow of a hyperbolic tangent nanofluid over a stretching
sheet. Nonlinear convection, Brownian motion and thermophoresis are studied. In addition the nonlinear
thermal radiation, dissipation and heat generation/absorption are taken into account. To characterize
the effect of the Arrhenius activation energy, a binary chemical reaction is considered. The total entropy
generation rate is calculated and discussed as per the criteria of the second law of thermodynamics.
Convergent solutions for the resulting nonlinear systems are derived and the effects of embedded parameters
of interest on velocity, concentration, temperature and entropy are examined. The skin friction coefficient
and Nusselt and Sherwood numbers are numerically discussed.

1 Introduction

The first law of thermodynamics considers the quantity of energy, and states that it neither is created nor destroyed
while the second law of thermodynamics concerns the quality of energy. However, the second law of thermodynamics
is associated with energy dissipation in a process, entropy optimization and the loss of useful work. Various scientists
and engineers carried out the analyses for entropy optimization using the second law of thermodynamics. The mo-
tivation for such analysis is based on the objectives to get optimum process parameters for various thermal devices.
For instance, some studies analyze the entropy optimization in thermal devices in which nano-materials are utilized as
coolant [1–5]. Ahmed et al. [6] studied the double diffusive slip flow of non-Newtonian materials and entropy genera-
tion over a nonlinear stretched surface. Entropy optimization and nanomaterial flow with micro-channel heat sink in a
circular shaped minichannel and microchannel is discussed by Sohel et al. [7]. The fluid flow is discussed in the presence
of alumina and copper nanoparticles with their volume fractions were varied from 2% to 6%. The maximum decrease
in entropy optimization was observed for Cu–H2O nano-fluid. Hayat et al. [8] studied the entropy generation in the
flow of viscous fluid having silver and copper nanoparticles. Govindaraju [9] examined the magnetohydrodynamic
stretched nanoliquid flow of a viscous liquid with entropy generation. In another study, Sumaira et al. [10] investigated
the nonlinear dissipative swirling flow and entropy optimization over a stretched surface. Similarly, the magnetohy-
drodynamic (MHD) flow of couple stress liquid between two rotating concentric cylinders with entropy generation
was discussed by Nagaraju et al. [11]. Rashidi et al. [12] explored entropy generation in MHD time-dependent flow of
viscous material in rotating disks. The authors used an artificial neural network via swarm algorithm optimization to
predict the rate of entropy generation. Mahian et al. [13] explored entropy generation and nanomaterial flow between
co-rotating cylinders. Gibanov et al. [14] studied entropy optimization and MHD forced convection flow in an open
cavity subject to horizontal porous blocks. Khan et al. [15] discussed mixed convection nanomaterial stretched flow of
a viscous liquid with entropy consideration.
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Fig. 1. Flow geometry.

Investigations involving binary chemical reaction with activation energy have gained continuous attention from
engineers and scientists. Chemical species with activation energy are incorporated in different mechanical and industrial
processes such as fibrous insulation, catalysis, air pollution and fog formation, etc. In practical life, such analysis is
being used in the processes including production of ceramics, combustion and biochemical systems [16–20]. Hernandez
et al. [21] analyzed the activation energy impact in viscous fluid flow. Kumar et al. [22] examined activation energy
in Carreau liquid flow with binary chemical reaction and heat diffusion. Awad et al. [23] discussed heat and mass
transfer in time-dependent rotating flow of viscous liquid with activation energy. Lu et al. [24] examined non-Fourier
heat flux in single and multi-wall carbon nanotubes with activation energy. Ramzan et al. [25] examined radiative
flow of non-Newtonian liquid with buoyancy and activation energy. Some further developments in this direction can
be found by consulting refs. [26–30].

In this study, the MHD stagnation point flow of a hyperbolic tangent nanofluid subject to magnetic field, nonlin-
ear thermal radiation, viscous dissipation and heat source/sink is studied. Binary chemical reaction associated with
activation energy is considered. The mathematical modeling of a chemical reaction via activation energy has gained
considerable attention of researchers. To the best of our knowledge, there is no systematic empirical research ad-
dressing the activation energy in the flow of a tangent hyperbolic nanofluid with entropy generation. Here we aim to
provide such attempt. The governing nonlinear system is solved for series solutions by HAM [31–48]. Effectiveness of
different flow variables on velocity, entropy generation, temperature, nanoparticle volume fraction is analyzed. Further
coefficients of skin friction and Nusselt and Sherwood numbers are numerically examined. The obtained analysis is
validated by comparison with those obtained by Waqas et al. [49] and Hayat et al. [50].

The rest of the paper is structured as follows. Section 2 discusses the formulation of the problem studied. Section 3
presents the physical parameters of interest. Section 4 interprets the homotopic solutions. Section 5 provides the
mathematical modeling of entropy generation. Section 6 consists of convergence analysis. Section 7 describes the
results discussion. Finally sect. 8 concludes this study.

2 Formulation

We considered a two-dimensional mixed convective stagnation point flow of a hyperbolic tangent fluid over a stretching
surface. A constant magnetic field is implemented to the case-study fluid. Flow geometry and coordinates of the problem
studied are presented in fig. 1.

We considered heat source/sink and viscous dissipation with total entropy generation. Additionally the character-
izing features of chemical species of activation energy are accounted. The entropy optimization is obtained using the
second law of thermodynamics. The governing equations for the flow analysis are [49,50]
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with

u = uw = a1x, v = 0, T = Tw, C = Cw, at y = 0,

u → ue = a2x, T → T∞, C → C∞, as y → ∞. (5)

In above expressions u, v and x, y represent the velocity components and Cartesian coordinates, respectively. Similarly
s is the power law index, ν is the kinematic viscosity, uw is the stretching velocity, Γ is the Williamson fluid parameter,
σ is the electrical conductivity, g is the gravitational acceleration, λ1 is the linear thermal expansion coefficient, λ2

is the nonlinear thermal expansion coefficient, ρf is the fluid density, λ3 is the linear mass expansion coefficient, λ4

is the nonlinear mass expansion coefficient, ue is the free stream velocity, T is the temperature, T∞ is the ambient
temperature, k is the thermal conductivity, B0 is the strength of magnetic field, cp is the specific heat, k∗ is the
mean absorption coefficient, σ∗ is the Stefan-Boltzman constant, a1 and a2 are the stretching rates, Tw is the wall
temperature, τ(= (ρcp)s

(ρcp)f
) indicates the ratio between effective nanoparticle material heat capacity and base fluid

heat capacity, μ is the dynamic viscosity, DB is the Brownian diffusion coefficient, C is the concentration, DT is the
thermophoresis diffusion coefficient, Q0 is the heat generation/absorption coefficient, C∞ is the ambient concentration,
kr is the chemical reaction rate constant, n is the fitted rate constant having values −1 < n < 1, Ea activation energy
and κ = 8.61 × 10−5 eV/K is the Boltzmann constant.

Considering

ξ =
√

a

ν
y, u = axf ′(ξ), v = −

√
aνf(ξ), θ =

T − T∞
Tw − T∞

, φ =
C − C∞
Cw − C∞

, (6)

the flow expressions become

(1 − s)f ′′′ + sWef ′′f ′′′ − f ′2 + ff ′′ + A2 − M(f ′ − A) + λθ(1 + βtθ) + φλN∗(1 + βcφ) = 0, (7)

1
Pr

θ′′ +
R

Pr
(θ(θw − 1) + 1)2(θ′2(θw − 1) + (θ(θw − 1) + 1)θ′′)
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2
WeEc(f ′′)3 + Ntθ′2 + Nbθ′φ′ + MEcf ′2 + δ∗θ = 0, (8)
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θ′′ + Scfφ′ − Scσ2

1(1 + δθ)n exp
[

−υ

1 + δθ

]
φ = 0, (9)

f(0) = 0, f ′(∞) → A, f ′(0) = 1, θ(0) = 1, θ(∞) → 0, φ(0) = 1, φ(∞) → 0. (10)

Here We denotes the Weissenberg number, A is the velocity ratio variable, M is the Hartmann number, λ is the
mixed convection variable, βt is the nonlinear thermal mixed convection parameter, N∗ is the ratio of concentration to
thermal buoyancy forces, βc is the nonlinear mixed convection variable for concentration, Pr is the Prandtl number, θw

is the temperature ratio parameter, R is the radiation parameter, Ec is the Eckert number, (Grx) and (Gr∗x) are the
Grashof number for temperature and concentration, respectively, Nt is the thermophoresis variable, Sc is the Schmidt
number, Nb is the Brownian motion parameter, δ∗ is the heat generation/absorption variable, σ1 is the chemical
reaction variable, δ is the temperature relative parameter and υ is the activation energy variable.
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The above dimensionless variables are defined as
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3 Physical quantities

3.1 Coefficient of skin friction

We have
Cfx =

2τw

ρu2
w

, (12)

where the wall shear stress τw is

τw = μ(1 − s)
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Putting eq. (13) in eq. (12), one has

1
2
Cf Re

1
2 = (1 − s)f ′′(0) +

sWe

2
(f ′′(0))2. (14)

3.2 Heat transfer rate (Nusselt number)

We have
Nux =

xqw

k(Tw − T∞)
, (15)

where qw represents the wall heat flux. Mathematically, one has

qw = −k
∂T

∂y

∣∣∣∣
y=0

+ (qr)w. (16)

Invoking eq. (16) in eq. (15), we have
Nux Re−

1
2 = [1 + Rθ3

w]θ′(0). (17)

3.3 Sherwood number

Mathematically,

Shx =
xJw

DB(Cw − C∞)
, (18)

where Jw indicates the wall mass flux and is defined as

qm = −DB

(
∂C

∂y

)∣∣∣∣
y=0

. (19)

From eqs. (19) and (18), we get the following form:

Shx Re−0.5
x = −φ′(0), (20)

where Cfx denotes skin friction, Rex(= ax2

ν ) the local Reynolds number, Nux the Nusselt number and Shx the
Sherwood number.
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4 Homotopic solutions

We write

f0(ξ) = 1 − exp(−ξ), θ0(ξ) = exp(−ξ), φ0(ξ) = exp(−ξ), (21)
f0(ξ) = 1 − exp(−ξ), θ0(ξ) = exp(−ξ), φ0(ξ) = exp(−ξ), (22)

Lf = f ′′′ − f ′, Lθ = θ′′ − θ, Lφ = φ′′ − φ, (23)

with

Lf [c1 + c2e
ξ + c3e

−ξ] = 0, Lθ[c4e
ξ + c5e

−ξ] = 0, Lφ[c6e
ξ + c7e

−ξ] = 0, (24)

in which ci (i = 1–7) represent arbitrary constants.

5 Entropy modeling

For the tangent hyperbolic fluid we mentioned
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where

Φ = (1 − s)
(

∂u

∂y

)2

+
sΓ√

2

(
∂u

∂y

) (
∂u

∂y

)2

. (26)

Using the above expressions one can express that
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In eq. (27), the first, second, third and fourth terms represent the thermal irreversibility, viscous dissipation, Joule
heating irreversibility and concentration irreversibility, respectively.

5.1 Entropy generation number

The volumetric entropy generation is

NG =
[
1 + R(θ(θw − 1) + 1)3

]
θ′2α1 + Br(1 − s)f ′′2 + Br

We

2
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in which α1(= Tw−T∞
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) highlights the temperature difference parameter, Br(= μa2x2

kΔT ) the Brinkman number,
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) the concentration difference variable, L(= RD(Cw−C∞)
k ) the diffusion variable and NG(= T∞SGν

akΔT )
the local entropy generation.
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Table 1. HAM convergence solutions for Ec = σ1 = 0.1, θw = 1.1, M = 0.5, s = 0.1 = n, Nt = N∗ = Nb = Sc = 0.01,
δ∗ = R = 0.2, λ = βt = βc = We = δ = A = 0.1 and Pr = 2.

Order of approximation −f ′′(0) −θ′(0) −φ′(0)

1 1.1746 0.78438 0.99849

8 1.2398 0.62055 0.99634

17 1.2398 0.62101 0.99488

24 1.2398 0.62101 0.99401

30 1.2398 0.62101 0.99401

40 1.2398 0.62101 0.99401

50 1.2398 0.62101 0.99401

Fig. 2. h̄-curves for f ′′(0), θ′(0) and φ′(0).

5.2 Bejan number

We have

Be =
Entropy generation due to heat and mass transfer

Total entropy generation
, (29)

or

Be =
[1 + R(θ(θw − 1) + 1)3]θ′2α1 + Lα2

α1
φ′2 + Lθ′φ′

[1 + R(θ(θw − 1) + 1)3]θ′2α1 + Br(1 − s)f ′′2 + Br We
2 f ′′3 + MBrf ′2 + Lα2

α1
φ′2 + Lθ′φ′ . (30)

6 Convergence analysis

We used HAM [47] for convergent solutions of the problem. In this method, auxiliary parameters are involved which
gave us freedom to adjust the convergence region for f ′′(0), θ′(0) and φ′(0). Convergent regions parallel to the h̄-axis
are −1.3 ≤ h̄f ≤ −0.4 and −1.6 ≤ h̄θ ≤ −0.8 and −1.8 ≤ h̄φ ≤ −0.2.

One can see that the convergence of f ′′(0), θ′(0) and φ′(0) is achieved at the 8th, 17th and 24th order of approxi-
mations, respectively (see table 1). Figure 2 is plotted for the h̄-curves.
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Table 2. Numerical computations of surface drag force when λ = βt = βc = We = δ = 0.1, Ec = ε = σ1 = 0.1, θw = 1.1,
M = 0.5, s = 0.3, Nt = N∗ = Nb = Sc = 0.01, R = 0.2, Pr = 2.

We s λ 1
2
Cf Re

1
2

0.1 0.1 0.1 0.00857

0.3 0.02642

0.5 0.04529

0.1 0.2 0.01842

0.3 0.03015

0.1 0.2 0.007474

0.3 0.006495

Table 3. Heat transfer rate when λ = βt = βc = We = δ = 0.1, Ec = ε = σ1 = 0.1, θw = 1.1, M = 0.5, s = 0.3,
Nt = N∗ = Nb = Sc = 0.01, R = 0.2, Pr = 2.

θw Nt Ec Nux Re−
1

n+1

1.1 0.01 0.1 0.7860

1.2 0.7980

1.3 0.8130

1.1 0.1 0.7300

0.2 0.6730

0.01 0.2 0.6650

0.3 0.5450

Table 4. Sherwood number when λ = βt = βc = We = δ = 0.1, Ec = ε = σ1 = 0.1, θw = 1.1, M = 0.5, s = 0.3,
Nt = N∗ = Nb = Sc = 0.01, R = 0.2, Pr = 2.

Sc Nt σ1 υ Shx Re−
1

n+1

0.01 0.01 0.1 0.1 0.9962

0.02 1.0020

0.03 1.0080

0.01 0.1 0.9356

0.2 0.8871

0.01 0.2 1.0410

0.3 1.1530

0.1 0.2 0.9941

0.3 0.9923

Table 5. Comparison values of f ′′(0) with refs. [49] and [50] when We = s = λ = N∗ = βt = βc = 0.

M ref. [49] ref. [50] Present

0.0 −1.0000 −1.0000 −1.0000

0.5 −1.1803 −1.18034 −1.18034

1.0 −1.41421 −1.414214 −1.414214

7 Discussion

After formulating the mathematical modeling of the problem, we reduced the system of PDEs having cylindrical
symmetry to a system of ODEs for all observables in terms of the vertical coordinate. The auxiliary problem and
the related series expansion are then analytically studied to examine the variation of the entropy as a function of
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Fig. 3. f ′(ξ) against N∗.

Fig. 4. f ′(ξ) against M .

different parameters which include Weissenberg number (We), velocity ratio variable (A), Hartman number (M),
mixed convection parameter (λ), nonlinear mixed convection parameter for temperature (βt), concentration and ther-
mal buoyancy forces ratio (N∗), nonlinear mixed convection variable for concentration (βc), Prandtl number (Pr),
radiation parameter (R), Eckert number (Ec), Grashof number for temperature and concentration (Grx) and (Gr∗x),
temperature ratio parameter (θw), thermophoresis variable (Nt), Schmidt number (Sc), Brownian motion parameter
(Nb), heat generation/absorption variable (δ∗), chemical reaction variable (σ1), temperature relative parameter (δ),
activation energy variable (υ), temperature difference parameter for entropy (α1), Brinkman number (Br), concentra-
tion difference variable (α2), diffusion variable (L) and local entropy generation (NG). The resulted graphs for velocity,
temperature, concentration and entropy number are displayed in figs. 3–33. Table 1 highlights the computational re-
sults of f ′′(0), θ′(0) and φ′(0) for convergence series solutions. Table 1 shows that the 8th, 17th and 24th order of
approximations fulfill the convergence requirement of f ′′(0), θ′(0) and φ′(0). Table 2 represents the impact of various
flow parameters like stretching variable (s), Weissenberg number (We) and (λ) on skin friction coefficient (surface
drag force). In table 2, it can be observed that the magnitude of (Cf ) is higher for a larger Weissenberg number and
stretching variable. Table 3 represents the impact of (θw), (Nt) and (Ec) on the Nusselt number. Similarly, it can be
observed that with the higher estimations of (θw), the (Nux) increases, while it decreases for larger (Nt) and (Ec).
Table 4 displays the influence of (Sc), (Nt), (σ1) and (υ) on the Sherwood number. The results indicate that the mass
transfer increases for higher estimations of the Schmidt number and chemical reaction variable while inverse behavior
exists for activation energy and thermophoresis. Table 5 shows agreement with the previous literature for numerical
values of f ′′(0).

7.1 Velocity distribution

Figures 3–7 show the impact of (N∗), (M), (λ), (βt) and Weissenberg number (We) on (f ′(ξ)). Figure 3 elucidates
the behavior of (f ′(ξ)) when N∗ = 0, 1, 2, 3, 4. It is noted that the fluid motion is faster for larger (N∗). Figure 4
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Fig. 5. f ′(ξ) against λ.

Fig. 6. f ′(ξ) against βt.

Fig. 7. f ′(ξ) against We.

examines the decreasing trend of (f ′(ξ)) for higher M = 0, 0.5, 1, 1.5, 2. Since (M) is dependent on the Lorentz force,
for larger (M) the resistance between the liquid particles increases which helps to reduce (f ′(ξ)). The influence of (λ)
on (f ′(ξ)) is shown in fig. 5. For larger λ = 0, 0.3, 0.6, 0.9, 1.2 the velocity (f ′(ξ)) increases. The ratio of buoyancy to
viscous forces is known as mixed convection (λ). For larger values of (λ), the viscous forces remain low which results
in the increase of velocity. The behavior of (f ′(ξ)) for larger nonlinear mixed convection parameter (βt) is shown in
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Fig. 8. θ(ξ) against Nt.

Fig. 9. θ(ξ) against Nb.

Fig. 10. θ(ξ) against θw.

fig. 6. It can be observed that the motion of fluid particles increases for higher βt = 0, 2, 4, 6, 8. In fact, for higher
(βt) the temperature difference (Tw − T∞) increases which is responsible for the enhancement of velocity. Figure 7
examines the impact of Weissenberg number We = 0, 1, 2, 3, 4 on (f ′(ξ)). We can see that the fluid motion gradually
reduces for larger (We).
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Fig. 11. θ(ξ) against Pr.

Fig. 12. θ(ξ) against Ec.

Fig. 13. θ(ξ) against R.

7.2 Temperature distribution

Figures 8–13 are sketched to analyze (θ(ξ)) against (Nt), (Nb), (θw), (Pr), (Ec) and (R). Variations of Nt = 0.1,
0.5, 1, 1.5, 2 and Nb = 0.1, 0.5, 1, 1.5, 2 for temperature distribution (θ(ξ)) is shown in figs. 8 and 9. A similar
behavior of both parameters is noticed with respect to the variation of temperature and thermal layer thickness. It
is observed that the movement of fluid particles rises from hot to cold regions for larger (Nt) (see fig. 8). For higher
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Fig. 14. φ(ξ) against σ1.

Fig. 15. φ(ξ) against Sc.

Fig. 16. φ(ξ) against Nt.

estimations of (Nb) the random motion of fluid particles enhances and so temperature increases (see fig. 8). For a
larger temperature ratio, the parameter θw = 1.1, 1.6, 2, 2.4, 2.8, the increasing trend in fluid temperature (θ(ξ)) is
noticed (see fig. 10). Figure 11 shows the impact of Pr = 0.4, 0.6, 0.9, 1.2, 1.5 on (θ(ξ)). One can observe that (θ(ξ))
work as a decreasing function of Pr. Figures 12 and 13 display the impact of Eckert number Ec = 0, 0.3, 0.6, 0.9, 1.2
and radiation parameter R = 0, 0.5, 1, 1.5, 2 on temperature (θ(ξ)). For larger (Ec) the fluid temperature increases.
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Fig. 17. φ(ξ) against υ.

Fig. 18. NG(ξ) against M .

Fig. 19. Be against M .

For an increase in (Ec) the friction inside fluid changes mechanical energy to thermal energy and as a result (θ(ξ))
increases (see fig. 12). An increasing trend of (θ(ξ)) is noticed for larger (R). Temperature increases due to a decay in
the mean absorption coefficient for larger (R) (see fig. 13).
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Fig. 20. NG(ξ) against s.

Fig. 21. Be against s.

Fig. 22. NG(ξ) against We.

7.3 Concentration

Figures 14–17 examine the influences of chemical reaction rate constant (σ1), Schmidt number (Sc), thermophoresis
parameter (Nt), Brownian motion parameter (Nb) and activation energy parameter (υ). The influence of chemical
reaction rate parameter σ1 = 0, 0.6, 0.8, 1, 1.5 is plotted in fig. 14. The decreasing impact of (φ(ξ)) is seen for larger
(σ1). Physically, for larger (σ1) the destructive rate of chemical reaction increases. It is used to dissolve the liquid specie



Eur. Phys. J. Plus (2018) 133: 329 Page 15 of 20

Fig. 23. Be against We.

Fig. 24. NG(ξ) against Nb.

Fig. 25. Be against Nb.

more effectively. Figure 15 shows the impact of Schmidt number Sc = 0.01, 0.5, 1, 1.5, 1.8 on concentration (φ(ξ)).
A decreasing trend is noticed for larger (Sc). Due to a decrease in mass diffusivity for larger (Sc) the concentration
and associated layers are decreased. Figures 16 and 17 are plotted to examine concentration for larger thermophoresis
parameter (Nt) and activation energy (υ). Here, an increasing behavior exists for both parameters at concentration
values. Physically, higher υ = 0, 0.6, 0.8, 1, 1.1 decrease the modified Arrhenius function and it leads to the promotion
of a generative chemical reaction. As a result, there is an enhancement of (φ(ξ)) (see fig. 17).
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Fig. 26. NG(ξ) against σ1.

Fig. 27. Be against σ1.

Fig. 28. NG(ξ) against υ.

7.4 Entropy and Bejan numbers

Figures 18–33 are sketched to analyze entropy (NG) and Bejan (Be) numbers for larger Hartman number (M), power
law index (s), Weissenberg number (We), chemical reaction rate variable (σ1), Brownian motion parameter (Nb),
activation energy variable (υ), Brinkman number (Br) and diffusion variable (L). Salient features of Hartman number
(M) on (NG) and (Be) are shown through figs. 18 and 19. An increasing trend of entropy generation (NG) is observed
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Fig. 29. Be against υ.

Fig. 30. NG(ξ) against Br.

Fig. 31. Be against Br.

while an opposite impact of Bejan number (Be) is noticed. Due to an increase in resistance for larger (M) the entropy
generation enhances (see fig. 18). Clearly viscous effects are dominated over heat and mass transfer effects which is the
possible cause for the reduction in (Be) values. Figures 20 and 21 are plotted to examine (NG) and (Be) for power law
index (s). Through higher estimation of (s) the entropy generation (NG) reduces while an increasing trend is observed
for higher (s). For larger (s) the heat and mass transport impacts are higher than viscous effects and so (Be) enhances
(see fig. 21). The influence of Weissenberg number (We) on (NG) and (Be) is shown in figs. 22 and 23. The entropy
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Fig. 32. NG(ξ) against L.

Fig. 33. Be against L.

generation rate enhances for larger (We) (see fig. 22). Physically, for higher (We) relaxation time increases which
means that there is more resistance between fluid particles. Resulting heat loss enhances (NG). On the other hand, a
reverse impact is seen for Bejan number (Be) because heat and mass transport effects are dominant for larger (We).
Figures 24 and 25 show the behavior of Brownian motion parameter (Nb) on (NG) and (Be). There is a reduction in
(NG) for larger (Nb). However, an behavior is noticed for (Be) through (Nb). We can see that for higher estimations of
(Nb), the concentration difference increases so (Be) is enhanced. Figures 26 and 27 reveal that for a stronger chemical
reaction rate variable (σ1), the (NG) and (Be) have increasing and decreasing effects respectively. For higher (σ1), the
chemical reaction rate (kr) gradually increases which is responsible for a surge in (NG) (see fig. 26). Characteristics
of activation energy parameter (υ) on (NG) and (Be) are presented in figs. 28 and 29. Entropy rate can be observed
as a decreasing function of activation energy (see fig. 28). However, increasing values of (υ) reduce the Bejan number
(Be) (see fig. 29). Similarly, in fig. 30, (NG) work as an increasing function of (Br). In fig. 31, the Bejan number has
an opposite effect on (Br). Actually, a large amount of heat is generated for higher (Br) which subsequently enhances
the value of (NG). It can be seen that for larger (Br) the heat and mass transfer irreversibilities are less than viscous
effects so (Be) reduces (see fig. 31). Figures 32 and 33 show the effect of diffusion parameter (L) on (NG) and (Be).
One can see that for larger values of (L) both (NG) and (Be) are increased.

8 Final remarks

The key points of the present communication are listed below.

– Skin friction coefficient (Cfx) enhances for higher Weissenberg number and stretching parameter.
– Magnitude of Nusselt number (Nux) is increased for a larger thermophoresis parameter while it decreases for higher

Eckert number.
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– For a larger estimation of the chemical reaction variable and Schmidt number there is an increase in the magnitude
of Sherwood number (Shx).

– Velocity of fluid particle decreases for larger Hartman number.
– An increase is observed for temperature on the higher values thermophoresis and Brownian diffusions.
– Temperature decreases for Prandtl number (Pr).
– Entropy number (NG) is increased for higher Hartman number (M).
– An increase in the Brinkman number leads to a decrease in the Bejan number.

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.
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21. F.J.R. Hernández, A.I.G. Merino, R.D. Garćıa, N.M.P. Flor, Powder Technol. 308, 318 (2017).
22. R.V.M.S.S.K. Kumar, G.V. Kumar, C.S.K. Raju, S.A. Shehzad, S.V.K. Varma, J. Phys. Commun. 2, 035004 (2018).
23. F.G. Awad, S. Motsa, M. Khumalo, PLoS ONE 9, e107622 (2014).
24. D. Lu, M. Ramzan, S. Ahmad, J.D. Chung, U. Farooq, Phys. Fluids 29, 123103 (2017).
25. M. Ramzan, N. Ullah, J.D. Chung, D. Lu, U. Farooq, Sci. Rep. 7, 12901 (2017).
26. M.F. Javed, M.I. Khan, N.B. Khan, R. Muhammad, M.U. Rehmand, S.W. Khan, T.A. Khan, Results Phys. 9, 1250 (2018).
27. N.B. Khan, Z. Ibrahim, L.T.T. Nguyen, M.F. Javed, M. Jameel, PLoS ONE 12, e0185832 (2017).
28. N.B. Khan, Z. Ibrahim, M.I. Khan, T. Hayat, M.F. Javed, Int. J. Heat Mass Transfer. 121, 309 (2018).
29. N.B. Khan, Z. Ibrahim, A.B.B.M. Badry, M. Jameel, M.F. Javed, Proc. Inst. Mech. Eng. Part M: J. Eng. Marit. Environ.

(2018) https://doi.org/10.1177/1475090217751326.
30. N.B. Khan, Z. Ibrahim, Proc. Inst. Mech. Eng. Part M: J. Eng. Marit. Environ. (2018) https://doi.org/10.1177/

1475090217751992.
31. M.I. Khan, M. Waqas, T. Hayat, A. Alsaedi, J. Colloid Interface Sci. 498, 85 (2017).
32. M.W.A. Khan, M.I. Khan, T. Hayat, A. Alsaedi, Physica B 534, 113 (2018).
33. J. Liu, B. Wang, Appl. Numer. Math. 128, 84 (2018).
34. W. Jia, X. He, L. Guo, Appl. Math. Mod. 45, 865 (2017).
35. T. Hayat, M.I. Khan, M. Imtiaz, A. Alsaedi, J. Therm. Sci. Eng. Appl. 10, 011002 (2018).
36. T. Hayat, M.I. Khan, A. Alsaedi, M.I. Khan, Int. Commun. Heat Mass Transfer 89, 190 (2017).
37. M.I. Khan, T. Hayat, M. Waqas, A. Alsaedi, J. Mol. Liq. 230, 143 (2017).
38. T. Hayat, S. Salman, M.I. Khan, A. Alsaedi, Results Phys. 8, 34 (2018).
39. M.I. Khan, M. Waqas, T. Hayat, A. Alsaedi, M.I. Khan, Eur. Phys. J. Plus 132, 489 (2017).
40. T. Hayat, A. Naseem, M.I. Khan, M. Farooq, A. Alsaedi, Phys. Chem. Liq. 56, 189 (2018).
41. M.I. Khan, M. Waqas, T. Hayat, A. Alsaedi, Results Phys. 7, 4183 (2017).
42. T. Hayat, M.I. Khan, M. Farooq, A. Alsaedi, M.I. Khan, Int. J. Heat Mass Transfer 106, 289 (2017).
43. A. Alsaedi, M.I. Khan, T. Hayat, J. Theor. Comput. Chem. 16, 1750064 (2017).
44. T. Hayat, S. Qayyum, M.I. Khan, A. Alsaedi, Chin. J. Phys. 55, 2501 (2017).



Page 20 of 20 Eur. Phys. J. Plus (2018) 133: 329

45. T. Hayat, A. Salman, M.I. Khan, A. Alsaedi, Results Phys. 7, 3419 (2017).
46. T. Hayat, M.Z. Kiyani, I. Ahmad, B. Ahmad, Int. J. Mech. Sci. 131, 1016 (2017).
47. M. Waqas, M. Farooq, M.I. Khan, A. Alsaedi, T. Hayat, T. Yasmeen, Int. J. Heat Mass Transfer 102, 766 (2016).
48. S.J. Liao, Homotopic Analysis Method in Nonlinear Differential Equations (Springer, Heidelberg, 2012).
49. M. Waqas, M.I. Khan, T. Hayat, A. Alsaedi, M.I. Khan, Eur. Phys. J. Plus 132, 280 (2017).
50. T. Hayat, M.I. Khan, M. Waqas, A. Alsaedi, Results Phys. 7, 2711 (2017).


