Skip to main content
Log in

Higher-dimensional charged LTB collapse in f(R) gravity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

This paper deals with the study of the gravitational collapse of a charged perfect fluid in n+2 dimensions in f(R) gravity. The Darmois matching criterion is used to formulate the junction conditions between the Lemaître-Tolman-Bondi metric (interior) and Reissner-Nordström metric (exterior) in n+2 dimensions while Senovilla junction conditions for f(R) gravity are also considered. The field equations are solved for the constant curvature which implies that matter variables are constant quantities. The expression for the time difference between the formation of trapped surfaces and singularity is established which supports the cosmic censorship hypothesis. We conclude that the electromagnetic field affects this time difference by reducing the repulsive effect of f R0) term. It is also found that the collapse rate of the charged fluid is faster as compared to the perfect fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Capozziello, V.F. Cardone, A. Troisi, Phys. Rev. D 71, 043503 (2005)

    Article  ADS  Google Scholar 

  2. T.P. Sotiriou, Rev. Mod. Phys. 82, 451 (2010)

    Article  ADS  Google Scholar 

  3. A. De Felice, S. Tsujikawa, Living Rev. Relativ. 13, 3 (2010)

    Article  ADS  Google Scholar 

  4. Y. Cai, D.A. Easson, J. Cosmol. Astropart. Phys. 9, 02 (2010)

    Article  ADS  Google Scholar 

  5. Y. Cai, D.A. Easson, Phys. Rev. D 84, 103502 (2011)

    Article  ADS  Google Scholar 

  6. Y. Cai et al., Rep. Prog. Phys. 79, 10 (2016)

    Article  Google Scholar 

  7. J.R. Oppenheimer, H. Snyder, Phys. Rev. 56, 455 (1939)

    Article  ADS  Google Scholar 

  8. C.W. Misner, D. Sharp, Phys. Rev. B 136, 571 (1964)

    Article  ADS  Google Scholar 

  9. L. Herrera, N.O. Santos, Phys. Rev. D 70, 084004 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  10. M. Sharif, H.R. Kausar, Astrophys. Space Sci. 331, 281 (2011)

    Article  ADS  Google Scholar 

  11. M.F. Shamir, Z. Ahmad, Z. Raza, Int. J. Theor. Phys. 54, 1450 (2015)

    Article  Google Scholar 

  12. J.A.R. Cembranos, A. de la Cruz-Dombriz, B.M. Núñez, J. Cosmol. Astropart. Phys. 04, 021 (2012)

    Article  ADS  Google Scholar 

  13. S.G. Ghosh, S.D. Maharaj, Phys. Rev. D 85, 124064 (2012)

    Article  ADS  Google Scholar 

  14. R. Goswami et al., Phys. Rev. D 90, 084011 (2014)

    Article  ADS  Google Scholar 

  15. M. Sharif, Z. Nasir, Astrophys. Space Sci. 357, 89 (2015)

    Article  ADS  Google Scholar 

  16. V.A. Kostelecký, S. Samuel, Phys. Rev. Lett. 63, 224 (1989)

    Article  ADS  Google Scholar 

  17. A. Banerjee, U. Debnath, S. Chakraborty, Int. J. Mod. Phys. D 12, 1255 (2003)

    Article  ADS  Google Scholar 

  18. U. Debnath, S. Chakraborty, Int. J. Mod. Phys. D 12, 1255 (2003)

    Article  ADS  Google Scholar 

  19. M. Sharif, Z. Ahmad, Acta Phys. Polon. B 39, 1337 (2008)

    ADS  MathSciNet  Google Scholar 

  20. G. Abbas et al., Eur. Phys. J. C 77, 443 (2017)

    Article  ADS  Google Scholar 

  21. S. Hod, T. Piran, Phys. Rev. D 58, 024017 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  22. S. Nath, U. Debnath, S. Chakraborty, Astrophys. Space Sci. 313, 431 (2008)

    Article  ADS  Google Scholar 

  23. M. Sharif, G. Abbas, Mod. Phys. Lett. A 24, 2551 (2009)

    Article  ADS  Google Scholar 

  24. M. Sharif, G. Abbas, Astrophys. Space Sci. 327, 285 (2010)

    Article  ADS  Google Scholar 

  25. M. Sharif, M.Z. Bhatti, Astrophys. Space Sci. 347, 337 (2013)

    Article  ADS  Google Scholar 

  26. M. Sharif, Z. Yousaf, Int. J. Theor. Phys. 55, 470 (2016)

    Article  Google Scholar 

  27. G.P. Singh, S. Kotambkar, Pramana J. Phys. 65, 35 (2005)

    Article  ADS  Google Scholar 

  28. R.A. Konoplya, A. Zhidenko, Phys. Rev. D 78, 104017 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  29. G. Darmois, Mémorial des Science Mathématiques (Gauthier-Villars, 1927)

  30. J.M.M. Senovilla, Phys. Rev. D 88, 064015 (2013)

    Article  ADS  Google Scholar 

  31. J. He, B. Wang, Phys. Rev. D 87, 023508 (2013)

    Article  ADS  Google Scholar 

  32. D.M Eardley, L. Smarr, Phys. Rev. D 19, 2239 (1979)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sharif.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharif, M., Anwar, A. Higher-dimensional charged LTB collapse in f(R) gravity. Eur. Phys. J. Plus 133, 284 (2018). https://doi.org/10.1140/epjp/i2018-12087-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12087-9

Navigation