Skip to main content
Log in

Exciton-polariton soliton wavetrains in molecular crystals with dispersive long-range intermolecular interactions

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The peculiar crystal structure of one-dimensional molecular solids originates from packing of an array of molecules in which intermolecular interactions are dominantly dispersive, including hydrogen-bond, van der Waals and London-type forces. These forces are usually relatively weaker than covalent and ionic bondings, such that long-range intermolecular interactions should play an important role in dispersion properties of molecular crystals, such as polymers and biomolecular chain structures. In this work the effects of long- but finite-range intermolecular interactions on single-exciton dispersion energy, and hence on the characteristic parameters of periodic soliton trains associated with bound exciton-polariton states in one-dimensional molecular crystals interacting with an electromagnetic field, are investigated. Long-range interactions are shown to quantitatively modify the exciton-polariton soliton amplitudes, width and velocity as a result of shrinkage of the single-exciton energy spectrum. The soliton structures of interest are nonlinear wavetrains, consisting of periodically ordered single-pulse (i.e. bright) or single-kink (i.e. dark) solitons with equal separation between the constituent single-soliton modes. Periodic soliton structures are relevant and best suited for finite-size chain systems, where periodic boundary conditions rule the generation of nonlinear wave profiles. Generally they are of weaker nonlinearity compared to their single-soliton constituents as is well established within the framework of their generation via the process of modulational instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.S. Davydov, Theory of Molecular Excitons (Plenum, NY, 1971)

  2. V.L. Broude, E.I. Rashba, E.F. Sheka, Spectroscopy of Molecular Excitons (Springer, NY, 1985)

  3. J.D. Wright, Molecular Crystals second edition (Cambridge University Press, Cambridge, UK, 1995)

  4. V.M. Kenkre, P. Reineker, Exciton Dynamics in Molecular Crystals and Aggregates (Springer, Berlin, 1982)

  5. C. Falvo, V. Pouthier, J. Chem. Phys. 123, 184709 (2005)

    Article  ADS  Google Scholar 

  6. C. Falvo, V. Pouthier, J. Chem. Phys. 123, 184710 (2005)

    Article  ADS  Google Scholar 

  7. A.S. Davydov, N.I. Kislukha, Phys. Status Solilidi B 59, 465 (1973)

    Article  ADS  Google Scholar 

  8. A.C. Scott, Phys. Rep. 217, 1 (1992)

    Article  ADS  Google Scholar 

  9. K.D. Zhu, T. Kobayashi, Phys. Lett. A 196, 105 (1994)

    Article  ADS  Google Scholar 

  10. Y. Xiao, W.H. Hai, Phys. Lett. A 209, 99 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  11. Y. Xiao, Y. Huang, X. Lin, Phys. Lett. A 235, 299 (1997)

    Article  ADS  Google Scholar 

  12. L. Cruzeiro, J. Biol. Phys. 35, 43 (2009)

    Article  Google Scholar 

  13. S. Takeno, J. Biol. Phys. 24, 185 (1999)

    Article  Google Scholar 

  14. A.S. Davydov, Soliton in Molecular Systems (D. Reidel, Dordrecht, 1985)

  15. E.N.N. Aboringong, A.M. Dikandé, Eur. Phys. J. E 41, 35 (2018)

    Article  Google Scholar 

  16. J. Adamowski, S. Bednarek, Solid-State Electron 22, 33 (1979)

    Article  ADS  Google Scholar 

  17. C. Schindler, R. Zimmermann, Phys. Rev. B 78, 045313 (2008)

    Article  ADS  Google Scholar 

  18. V. Shahnazaryan, I. Iorsh, I.A. Shelykh, O. Kyriienko, Phys. Rev. B 96, 115409 (2017)

    Article  ADS  Google Scholar 

  19. M.T. Primatarowa, K.T. Stoychev, R.S. Kamburova, Phys. Rev. B 52, 15291 (1995)

    Article  ADS  Google Scholar 

  20. E.S. Khramtsov, P.A. Belov, P.S. Grigoryev, I.V. Ignatiev, S.Yu. Verbin, S.L. Yakovlev, J. Phys.: Conf. Ser. 690, 012018 (2016)

    Google Scholar 

  21. A. Syouji, S. Saito, A. Otomo, J. Phys. Soc. Jpn. 86, 124720 (2017)

    Article  ADS  Google Scholar 

  22. I. Cosic, Resonant recognition model of protein-protein and protein-DNA interaction, in Bioinstrumentation and Biosensors (Marcel Dekker, New York, 1990) pp. 475--510

  23. I. Cosic, IEEE Trans. Biomed. Eng. 41, 1101 (1994)

    Article  Google Scholar 

  24. Z. Sinkala, J. Theor. Biol. 241, 919 (2006)

    Article  MathSciNet  Google Scholar 

  25. K.T. Stoychev, M.T. Primatarowa, K. Marinov, Eur. Phys. J. B 29, 301 (2002)

    Article  ADS  Google Scholar 

  26. K.T. Stoychev, M.T. Primatarowa, J. Phys.: Condens. Matter 13, L183 (2001)

    ADS  Google Scholar 

  27. A.M. Dikandé, Phys. Lett. A 220, 335 (1996)

    Article  ADS  Google Scholar 

  28. M. Kac, E. Helfand, J. Math. Phys. 4, 1078 (1963)

    Article  ADS  Google Scholar 

  29. G.A. Baker Jr., Phys. Rev. 130, 1406 (1963)

    Article  ADS  Google Scholar 

  30. A.M. Dikandé, T.C. Kofané, Physica D 83, 450 (1995)

    Article  ADS  Google Scholar 

  31. A.M. Dikandé, Phys. Lett. A 369, 146 (2007)

    Article  ADS  Google Scholar 

  32. S.K. Sarker, J.A. Krumhansl, Phys. Rev. B 23, 2374 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  33. A.M. Dikandé, Eur. Phys. J. B 55, 397 (2007)

    Article  ADS  Google Scholar 

  34. A.M. Dikandé, Phys. Rev. A 81, 013821 (2010)

    Article  ADS  Google Scholar 

  35. R.D. Dikandé Bitha, A.M. Dikandé, Phys. Rev. A 97, 033813 (2018)

    Article  ADS  Google Scholar 

  36. D.J. Jubgang Fandio, A.M. Dikandé, A. Sunda-Meya, Phys. Rev. A 92, 053850 (2015)

    Article  ADS  Google Scholar 

  37. D.J. Jubgang Fandio, A.M. Dikandé, J. Opt. Soc. Am. B 34, 66 (2017)

    Article  ADS  Google Scholar 

  38. D.S. Mbieda Petmegni, A.M. Dikandé, B.Z. Essimbi, Appl. Phys. B 123, 171 (2017)

    Article  ADS  Google Scholar 

  39. A.M. Dikandé, Phys. Scr. 60, 291 (1999)

    Article  ADS  Google Scholar 

  40. A.M. Dikandé, T.C. Kofané, J. Phys. Condens. Matter 7, L141 (1995)

    Article  ADS  Google Scholar 

  41. E.A. Silinsh, V. Capek, Organic Molecular Crystals: Interaction, Localization and Transport Phenomena (AIP Press, New York, 1994)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain M. Dikandé.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nji Nde Aboringong, E., Dikandé, A.M. Exciton-polariton soliton wavetrains in molecular crystals with dispersive long-range intermolecular interactions. Eur. Phys. J. Plus 133, 263 (2018). https://doi.org/10.1140/epjp/i2018-12086-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12086-x

Navigation