Skip to main content
Log in

Wave propagation in viscous-fluid-conveying piezoelectric nanotubes considering surface stress effects and Knudsen number based on nonlocal strain gradient theory

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this paper, size-dependent wave dispersion behavior of smart piezoelectric nanotubes conveying viscous fluid is analyzed considering surface stress effects and slip boundary conditions. The size effects of the nanotube are taken into account by making use of the nonlocal strain gradient theory (NSGT). To take the slip boundary conditions into consideration, the average velocity correction factor is utilized. The Newtonian method, in conjunction with the Rayleigh beam theory, is incorporated within the constitutive stress-strain relations of the surface and bulk of a piezoelectric material to derive the governing equations. The obtained equations involve size-dependent parameters, surface effects, slip boundary conditions, fluid viscosity and piezoelectric voltage. As a consequence, an analytical solution is applied to extract the wave dispersion relation of the nanotube. In addition, the influences of different factors, including nonlocal parameter, length scale parameter, surface effects, piezoelectric voltage, surface elastic modulus and surface residual stress on the wave dispersion characteristics of the piezoelectric nanotube, are examined. The effects of the piezoelectric voltage on the damping ratio of the nanotube are also studied. The obtained results in this paper are expected to be useful for more accurate prediction of the mechanical behaviors as well as of the wave propagation characteristics of viscous-fluid-conveying piezoelectric smart nanotubes. Meanwhile, the results will be helpful for efficient applications of piezoelectric nanotubes designing smart mechanical systems on a nanotechnology basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.L. Ke, Y.S. Wang, Physica E 63, 52 (2014)

    Article  ADS  Google Scholar 

  2. M.F. Liu, Appl. Math. Model. 35, 2443 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  3. A. Amiri, R. Shabani, G. Rezazadeh, Microfluid Nanofluid 20, 18 (2016)

    Article  Google Scholar 

  4. A. Amiri, I. Pournaki, E. Jafarzadeh, R. Shabani, G. Rezazadeh, Microfluid Nanofluid 20, 38 (2016)

    Article  Google Scholar 

  5. A. Daga, N. Ganesan, K. Shankar, Sens. Actuators A-Phys. 150, 46 (2009)

    Article  Google Scholar 

  6. C. Liu, L.L. Ke, Y.-S. Wang, J. Yang, S. Kitipornchai, Compos. Struct. 106, 167 (2013)

    Article  Google Scholar 

  7. Y. Li, W. Feng, Z. Cai, Compos. Struct. 115, 41 (2014)

    Article  Google Scholar 

  8. L. Ke, Y. Wang, J. Reddy, Compos. Struct. 116, 626 (2014)

    Article  Google Scholar 

  9. M. Komijani, J. Reddy, M. Eslami, J. Mech. Phys. Solids 63, 214 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  10. S. Xu, Eur. J. Mech.-A/Solids 46, 54 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  11. P. Malekzadeh, M. Shojaee, Compos. Part B: Eng. 52, 84 (2013)

    Article  Google Scholar 

  12. S.M. Bağdatli, N. Togun, Int. J. Non-Linear Mech. 95, 132 (2017)

    Article  ADS  Google Scholar 

  13. L. Lu, X. Guo, J. Zhao, Int. J. Eng. Sci. 116, 12 (2017)

    Article  Google Scholar 

  14. Y. Zhang, M. Pang, L. Fan, Phys. Lett. 380, 2294 (2016)

    Article  MathSciNet  Google Scholar 

  15. F. Ebrahimi, M.R. Barati, A. Dabbagh, Int. J. Eng. Sci. 107, 169 (2016)

    Article  Google Scholar 

  16. J. Marzbanrad, M. Boreiry, G.R. Shaghaghi, Appl. Phys. A 122, 1 (2016)

    Article  Google Scholar 

  17. C. Lim, G. Zhang, J. Reddy, J. Mech. Phys. Solids 78, 298 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  18. M. Shaat, F. Mahmoud, X.L. Gao, A.F. Faheem, Int. J. Mech. Sci. 79, 31 (2014)

    Article  Google Scholar 

  19. R. Bahaadini, M. Hosseini, A. Jamalpoor, Physica B 509, 55 (2017)

    Article  ADS  Google Scholar 

  20. L. Wang, Physica E 43, 437 (2010)

    Article  ADS  Google Scholar 

  21. S. Saffari, M. Hashemian, D. Toghraie, Physica B 520, 97 (2017)

    Article  ADS  Google Scholar 

  22. A. Fereidoon, E. Andalib, A. Mirafzal, Physica E 81, 205 (2016)

    Article  ADS  Google Scholar 

  23. H. Liu, Z. Lv, Q. Li, Microfluid Nanofluid 21, 140 (2017)

    Article  Google Scholar 

  24. J. Chen, J. Guo, E. Pan, J. Sound Vib. 400, 550 (2017)

    Article  ADS  Google Scholar 

  25. F. Ebrahimi, A. Dabbagh, Compos. Struct. 162, 281 (2017)

    Article  Google Scholar 

  26. N. Sina, H. Moosavi, H. Aghaei, M. Afrand, S. Wongwises, Physica E 85, 109 (2017)

    Article  ADS  Google Scholar 

  27. F. Ebrahimi, M.R. Barati, P. Haghi, Eur. Phys. J. Plus 131, 383 (2016)

    Article  Google Scholar 

  28. F. Ebrahimi, A. Dabbagh, Eur. Phys. J. Plus 132, 153 (2017)

    Article  Google Scholar 

  29. H. Wang, K. Dong, F. Men, Y. Yan, X. Wang, Appl. Math. Model. 34, 878 (2010)

    Article  MathSciNet  Google Scholar 

  30. S. Narendar, S. Ravinder, S. Gopalakrishnan, Comput. Mater. Sci. 56, 179 (2012)

    Article  Google Scholar 

  31. S. Narendar, S. Gopalakrishnan, Int. J. Mech. Sci. 64, 221 (2012)

    Article  Google Scholar 

  32. Q. Wang, J. Appl. Phys. 98, 124301 (2005)

    Article  ADS  Google Scholar 

  33. L. Li, Y. Hu, L. Ling, Compos. Struct. 133, 1079 (2015)

    Article  Google Scholar 

  34. L.H. Ma, L.L. Ke, Y.Z. Wang, Y.S. Wang, Physica E 86, 253 (2017)

    Article  ADS  Google Scholar 

  35. F. Ebrahimi, M.R. Barati, Appl. Phys. A 123, 81 (2017)

    Article  ADS  Google Scholar 

  36. F. Ebrahimi, M.R. Barati, A. Dabbagh, Appl. Phys. A 122, 949 (2016)

    Article  ADS  Google Scholar 

  37. J. Zang, B. Fang, Y.W. Zhang, T.Z. Yang, D.H. Li, Physica E 63, 147 (2014)

    Article  ADS  Google Scholar 

  38. L. Zhang, J. Liu, X. Fang, G. Nie, Eur. J. Mech.-A/Solids 46, 22 (2014)

    Article  ADS  Google Scholar 

  39. H. Liu, H. Liu, J. Yang, Physica E 93, 153 (2017)

    Article  ADS  Google Scholar 

  40. W. Xiao, L. Li, M. Wang, Appl. Phys. A 123, 388 (2017)

    Article  ADS  Google Scholar 

  41. L. Li, Y. Hu, L. Ling, Physica E 75, 118 (2016)

    Article  ADS  Google Scholar 

  42. M. Arefi, Acta Mech. 227, 2529 (2016)

    Article  MathSciNet  Google Scholar 

  43. M. Arefi, A.M. Zenkour, Mech. Res. Commun. 79, 51 (2017)

    Article  Google Scholar 

  44. F. Kaviani, H.R. Mirdamadi, Comput. Struct. 116, 75 (2013)

    Article  Google Scholar 

  45. S. Filiz, M. Aydogdu, Compos. Struct. 132, 1260 (2015)

    Article  Google Scholar 

  46. H. Zeighampour, Y.T. Beni, I. Karimipour, Microfluid Nanofluid 21, 85 (2017)

    Article  Google Scholar 

  47. L. Li, Y. Hu, Comput. Mater. Sci. 112, 282 (2016)

    Article  Google Scholar 

  48. Y.X. Zhen, Physica E 86, 275 (2017)

    Article  ADS  Google Scholar 

  49. Y. Yang, L. Zhang, C.W. Lim, J. Sound Vib. 331, 1567 (2012)

    Article  ADS  Google Scholar 

  50. Y.Z. Wang, F.M. Li, K. Kishimoto, Comput. Mater. Sci. 48, 413 (2010)

    Article  Google Scholar 

  51. S. Narendar, S. Gopalakrishnan, Physica E 42, 1706 (2010)

    Article  ADS  Google Scholar 

  52. Y. Zhen, L. Zhou, Mod. Phys. Lett. B 31, 1750069 (2017)

    Article  ADS  Google Scholar 

  53. L. Wang, Comput. Mater. Sci. 49, 761 (2010)

    Article  ADS  Google Scholar 

  54. A.G. Arani, M. Roudbari, S. Amir, Appl. Math. Model. 40, 2025 (2016)

    Article  MathSciNet  Google Scholar 

  55. R. Bahaadini, M. Hosseini, B. Jamali, Physica B 529, 57 (2018)

    Article  ADS  Google Scholar 

  56. F. Kaviani, H.R. Mirdamadi, Comput. Mater. Sci. 61, 270 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roohollah Talebitooti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amiri, A., Talebitooti, R. & Li, L. Wave propagation in viscous-fluid-conveying piezoelectric nanotubes considering surface stress effects and Knudsen number based on nonlocal strain gradient theory. Eur. Phys. J. Plus 133, 252 (2018). https://doi.org/10.1140/epjp/i2018-12077-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12077-y

Navigation