Skip to main content
Log in

Wave propagation analysis of carbon nanotube reinforced composite beams

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this paper, wave propagation in carbon nanotube reinforced composite (CNTRC) beams has been studied. Winkler elastic foundation is considered as a base for the CNTRC beam. Besides, four distribution patterns for single-walled carbon nanotubes (SWCNT) in a polymer matrix were investigated. To use the simplified mechanical properties of CNTRCs, the rule of mixture was employed. It was tried to compare the different shear deformation theories, from the previous investigations. Next, the governing equations were derived by the extended Hamilton’s principle, which was obtained from the energy methods, and was solved analytically. To validate the results, the research was confirmed by previous investigations. It is hoped that the results of the current paper can be used in future studies on wave propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Ebrahimi, S. Habibi, Mech. Adv. Mater. Struct. 25, 425 (2018)

    Article  Google Scholar 

  2. M. Kim, Y.B. Park, O.I. Okoli, C. Zhang, Compos. Sci. Technol. 69, 335 (2009)

    Article  Google Scholar 

  3. H. Zarei, M. Fallah, H. Bisadi, A. Daneshmehr, G. Minak, Compos. Part B: Eng. 113, 206 (2017)

    Article  Google Scholar 

  4. H.S. Shen, C.L. Zhang, Mater. Design 31, 3403 (2010)

    Article  Google Scholar 

  5. N. Fantuzzi, F. Tornabene, M. Bacciocchi, R. Dimitri, Compos. Part B: Eng. 115, 384 (2017)

    Article  Google Scholar 

  6. H. Wu, S. Kitipornchai, J. Yang, Int. J. Struct. Stab. Dyn. 15, 1540011 (2015)

    Article  MathSciNet  Google Scholar 

  7. A.G. Arani, S. Maghamikia, M. Mohammadimehr, A. Arefmanesh, J. Mech. Sci. Technol. 25, 809 (2011)

    Article  Google Scholar 

  8. T. Mori, K. Tanaka, Acta Metal. 21, 571 (1973)

    Article  Google Scholar 

  9. G.J. Simitses, Appl. Mech. Rev. 40, 1403 (1987)

    Article  ADS  Google Scholar 

  10. J.N. Reddy, Int. J. Numer. Methods Eng. 47, 663 (2000)

    Article  Google Scholar 

  11. B.S. Aragh, A.N. Barati, H. Hedayati, Compos. Part B: Eng. 43, 1943 (2012)

    Article  Google Scholar 

  12. A.G. Arani, M. Jamali, M. Mosayyebi, R. Kolahchi, Compos. Part B: Eng. 95, 209 (2016)

    Article  Google Scholar 

  13. A.C. Eringen, D.G.B. Edelen, Int. J. Eng. Sci. 10, 233 (1972)

    Article  Google Scholar 

  14. J. Kraus, Electromagnetics (McGraw Hill, 1953)

  15. A. Ghorbanpour Arani, M. Jamali, M. Mosayyebi, R. Kolahchi, Proc. Inst. Mech. Eng., Part N: J. Nanomater. Nanoeng. Nanosyst. 231, 17 (2017)

    Google Scholar 

  16. M. Simşek, Nucl. Eng. Design 240, 697 (2010)

    Article  Google Scholar 

  17. M.H. Yas, N. Samadi, Int. J. Pressure Vessels Piping 98, 119 (2012)

    Article  Google Scholar 

  18. T. Yan, S. Kitipornchai, J. Yang, X.Q. He, Compos. Struct. 93, 2992 (2011)

    Article  Google Scholar 

  19. A.N. Alizada, A.H. Sofiyev, Meccanica 46, 915 (2011)

    Article  MathSciNet  Google Scholar 

  20. A. Alibeigloo, K.M. Liew, Int. J. Appl. Mech. 7, 1550002 (2015)

    Article  Google Scholar 

  21. W.Q. Chen, C.F. Lv, Z.G. Bian, Compos. Struct. 62, 75 (2003)

    Article  Google Scholar 

  22. F. Lin, Y. Xiang, Appl. Math. Model. 38, 3741 (2014)

    Article  MathSciNet  Google Scholar 

  23. A.N. Alizada, A.H. Sofiyev, J. Reinf. Plast. Compos. 30, 1583 (2011)

    Article  ADS  Google Scholar 

  24. A.N. Alizada, A.H. Sofiyev, N. Kuruoglu, Acta Mech. 223, 1371 (2012)

    Article  MathSciNet  Google Scholar 

  25. L.L. Ke, J. Yang, S. Kitipornchai, Compos. Struct. 92, 676 (2010)

    Article  Google Scholar 

  26. K.M. Liew, Z.X. Lei, J.L. Yu, L.W. Zhang, Comput. Methods Appl. Mech. Eng. 268, 1 (2014)

    Article  ADS  Google Scholar 

  27. F. Ebrahimi, S. Habibi, Mech. Adv. Mater. Struct. 25, 425 (2018)

    Article  Google Scholar 

  28. F. Ebrahimi, A. Dabbagh, Eur. Phys. J. Plus 133, 151 (2018)

    Article  Google Scholar 

  29. N. Wattanasakulpong, V. Ungbhakorn, Comput. Mater. Sci. 71, 201 (2013)

    Article  Google Scholar 

  30. M. Janghorban, M.R. Nami, Mech. Adv. Mater. Struct. 24, 458 (2017)

    Article  Google Scholar 

  31. M. Simşek, H.H. Yurtcu, Compos. Struct. 97, 378 (2013)

    Article  Google Scholar 

  32. M. Touratier, Int. J. Eng. Sci. 29, 901 (1991)

    Article  Google Scholar 

  33. K.P. Soldatos, Acta Mech. 94, 195 (1992)

    Article  MathSciNet  Google Scholar 

  34. S.A. Ambartsumian, Izv. Otd. Tech. Nauk. AN SSSR 5, 69 (1958)

    Google Scholar 

  35. M. Karama, K.S. Afaq, S. Mistou, Int. J. Solids Struct. 40, 1525 (2003)

    Article  Google Scholar 

  36. E. Reissner, Appl. Mech. Rev. 38, 1453 (1985)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzad Ebrahimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, F., Rostami, P. Wave propagation analysis of carbon nanotube reinforced composite beams. Eur. Phys. J. Plus 133, 285 (2018). https://doi.org/10.1140/epjp/i2018-12069-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12069-y

Navigation