Skip to main content
Log in

Modeling a new acetone sensor based on carbon nanotubes using finite elements and neural network

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The objective of this study is to model and simulate the behavior of a new biosensor based on carbon nanotubes to detect, automatically and autonomously, the presence of acetone molecules. A 3D model, based on finite elements of SWCNTs, is proposed and developed using the FE code of the ANSYS simulator. We have developed a study on the dynamic behavior of the carbon nanotube for two clamped-clamped and clamped-free structures, by determining the frequency shift of the nanotube resonator, which varies as a function of the attached mass of acetone molecules. We found that the nanotube resonator can detect one single acetone molecule. A parametric study was conducted to highlight the influence of the nanotube diameter, the length of the nanotube, the attached molecule position and the boundary conditions on the natural frequencies of the nanotube. A multilayer neural network has been used to model the behavior of our acetone sensor. We have shown that artificial neural networks (ANNs) replace our acetone sensor because they faithfully reproduce its behavior and take into account dependence on the structural parameters. The neural network model of the sensor thus obtained was implemented on the SPICE simulator, which allowed us to simulate the operation of an electric environment and therefore assess its performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Stampfer, T. Helbling, D. Obergfell, B. Schöberle, M.K. Tripp, A. Jungen, S. Roth, V.M. Bright, C. Hierold, Nano Lett. 6, 233 (2006)

    Article  ADS  Google Scholar 

  2. J. Chaste, A. Eichler, J. Moser, G. Ceballos, R. Rurali, A. Bachtold, Nat. Nanotechnol. 7, 301 (2012)

    Article  ADS  Google Scholar 

  3. S.A. Gohari, J. Abdi, M.K. Hafshejani, A. Arad, World Appl. Sci. J. 18, 1749 (2012)

    Google Scholar 

  4. H. Bridle, W. Wang, D. Gavriilidou, F. Amalou, D.P. Hand, W. Shu, Sensors Actuators A 247, 144 (2016)

    Article  Google Scholar 

  5. R. Chowdhury, S. Adhikari, IEEE Trans. Nanotechnol. 10, 659 (2011)

    Article  ADS  Google Scholar 

  6. R. Chowdhury, S. Adhikari, J. Mitchell, Science Direct - Physica E 42, 104 (2009)

    Google Scholar 

  7. I. Mehdipour, A. Barari, G. Domairry, Comput. Mater. Sci. 50, 1830 (2011)

    Article  Google Scholar 

  8. A.Y. Joshi, S.C. Sharma, S.P. Harsha, Sensors Actuators A 168, 275 (2011)

    Article  Google Scholar 

  9. S.K. Georgantzinos, N.K. Anifantis, Physica E 42, 1795 (2010)

    Article  ADS  Google Scholar 

  10. I. Mehdipour, A. Erfani-Moghadam, C. Mehdipour, Curr. Appl. Phys. 13, 1463 (2013)

    Article  ADS  Google Scholar 

  11. J.H. Lee, B.S. Lee, Comput. Mater. Sci. 51, 30 (2012)

    Article  Google Scholar 

  12. D. Wu, W. Chien, C. Chen, H. Chen, Sensors Actuators A 126, 117 (2006)

    Article  Google Scholar 

  13. C. Li, T.W. Chou, Int. J. Solids Struct. 40, 2487 (2003)

    Article  Google Scholar 

  14. D.H. Wu, W.T. Chien, C.S. Chen, H.H. Chen, Sensors Actuators A 126, 117 (2006)

    Article  Google Scholar 

  15. Z.L. Wang, R.P. Gao, P. Poncharal, W.A. de Heer, Z.R. Dai, Z.W. Pan, Mater. Sci. Eng. C 16, 3 (2001)

    Article  Google Scholar 

  16. Y. Yan, G. Shi, P. Zhao, J. Comput. 6, 1125 (2011)

    Google Scholar 

  17. S. Prabhu, S. Bhaumik, B.K. Vinayagam, J. Mech. Eng. Res. 4, 260 (2012)

    Google Scholar 

  18. M.B. Panchal, S.H. Upadhyay, Mol. Simul. 40, 1035 (2014)

    Article  Google Scholar 

  19. Keun Su Kimv et al., Semiconduct. Sci. Technol. 32, 013003 (2016)

    ADS  Google Scholar 

  20. F. Djeffal, Z. Dibi, M.L. Hafiane, D. Arar, Mater. Sci. Eng. C 27, 1111 (2007)

    Article  Google Scholar 

  21. F. Djeffal, A. Abdi, Z. Dibi, M. Chahdi, A. Benhaya, Mater. Sci. Eng. B 147, 239 (2008)

    Article  Google Scholar 

  22. F. Menacer, A. Kadri, F. Djeffal, Z. Dibi, H. Ferhati, Modeling of boron nitride-based nanotube biological sensor using neural networks, in The 17th international conference (STA’2016), IEEE, Sousse, Tunisia, December 2016 (IEEE, 2016)

  23. F. Menacer, A. Kadri, F. Djeffal, Z. Dibi, H. Ferhati, Modeling and investigation of smart capacitive pressure sensor using artificial neural networks, in 6th International Conference on Systems and Control (ICSC 2017), IEEE, Batna, Algeria, May 2017 (IEEE, 2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Menacer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menacer, F., Dibi, Z. & Kadri, A. Modeling a new acetone sensor based on carbon nanotubes using finite elements and neural network. Eur. Phys. J. Plus 133, 238 (2018). https://doi.org/10.1140/epjp/i2018-12059-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12059-1

Navigation