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Abstract. A growing acceptance of fiber-reinforced composite materials imparts some relevance to explor-
ing the effects which a predominantly linear scattering lattice may have upon interior radiative transport.
Indeed, a central feature of electromagnetic wave propagation within such a lattice, if sufficiently dilute,
is ray confinement to cones whose half-angles are set by that between lattice and the incident ray. When
such propagation is subordinated to a viewpoint of an unpolarized intensity transport, one arrives at a
somewhat simplified variant of the Boltzmann equation with spherical scattering demoted to its cylin-
drical counterpart. With a view to initiating a hopefully wider discussion of such phenomena, we follow
through in detail the half-space albedo problem. This is done first along canonical lines that harness the
Wiener-Hopf technique, and then once more in a discrete ordinates setting via flux decomposition along the
eigenbasis of the underlying attenuation/scattering matrix. Good agreement is seen to prevail. We further
suggest that the Case singular eigenfunction apparatus could likewise be evolved here in close analogy
to its original, spherical scattering model. A cursory contact with related problems in the astrophysical
literature suggests, in addition, that the basic physical fidelity of our scalar radiative transfer equation
(RTE) remains open to improvement by passage to a (4 × 1) Stokes vector, (4 × 4) matricial setting.

1 Introduction

Fiber-reinforced composites1 have, in recent decades, enjoyed a widespread penetration into the manufacture of durable
structures, most noticeable among them being perhaps aircraft fuselage segments on a large scale, an arena dominated
heretofore by aluminum as the material of choice. And, while the primary objectives of reduced weight and cost have
indeed been achieved, subsidiary issues of somewhat lesser importance have nevertheless arisen. One among the latter
is FRC behavior vis-à-vis radiative transport at μm wavelengths in the infrared.

Reinforcing fibers within some uniform host matrix are most frequently encountered at two opposite extremes of
dispersal regularity/irregularity, to wit, short tendrils randomly oriented, or else extended threads aligned along a
single direction. Evidently it is only the FRC samples belonging to the second, aligned category which can be expected
to exert any significant orientational influence upon radiative transport.

With this background in mind, the present note seeks to offer a very modest first insight into FRC radiative transfer
by solving the albedo problem for an otherwise uniform half-space matrix2 randomly seeded with long (idealized, to
be sure, as infinitely long) fibers in sufficiently dilute3 distribution parallel to the material interface.

One should hasten to acknowledge that, even though the present effort was initially motivated by relatively util-
itarian considerations, radiant transport across randomized swarms of elongated particles, typified by ice needles4 in
terrestrial clouds [1], and by partially oriented interstellar dust grains [2], had long ago attracted the attention of as-
trophysicists seeking to analyze light reflected/emitted from a variety of cosmic environments, planetary atmospheres

a e-mail: jan.grzesik@hotmail.com
1 Abbreviated henceforth as FRC, singular or plural as the local context may dictate.
2 Admittedly, in what follows, we allow this matrix to default to empty space. This is done so as to avoid having interface refrac-

tive complications obscure the details of our evolving radiative transport machinery. Needless to say, this physical/mathematical
lacuna pleads to be filled by more realistic work in the future.

3 By dilute we mean here an average fiber separation of at least several wavelengths.
4 A thorough discussion of the extent to which finite cylinder scattering can be approximated by that due to its infinite

idealization can be found in [1].



Page 2 of 14 Eur. Phys. J. Plus (2018) 133: 178

Fig. 1. Cylinder scattering cone C under oblique ray impact.

prominent among them. Indeed, a standard text [3], in wide circulation since first published in 1957, is devoted to
light scattering by the types of particulates that astrophysicists expect to encounter. The global theory of radiative
transport, on the other hand, has been dominated by the two magisterial monographs [4,5], with both acknowledging
their debt to the invariant embedding viewpoint first advocated by Ambartsumian. Planar slab and/or bona fide half-
space albedo problems, akin to that presently considered, naturally made their way into the astrophysical research
literature during attempts to understand light reflection from these atmospheres in their geometrically idealized limit.
Early samples of such work, which draws on the methods of both Chandrasekhar and Sobolev, phrased in terms of
Stokes four-element vectors so as to keep electromagnetic polarization5 in full view, can be found in [6–8], and have
doubtless spawned their own research progeny.

It is characteristic of an electromagnetic field impinging upon a uniaxial scatterer as now described to propagate
along directions confined to cones having the fiber direction as axis and opened to the angle between that axis and
the direction of incidence6, angle π/2− φ in fig. 17. Since conical confinement of this sort is indifferent to the incident
field polarization, a welcome invitation presents itself to sidestep the Maxwell electromagnetic apparatus in favor of
the much simpler Boltzmann equation governing radiative transfer. Such transfer need clearly be tracked only in its
projection upon the plane perpendicular to fiber direction, the full conical flux being gotten therefrom under a simple
multiplication by secφ as indicated in fig. 1. Plainly put, the only positional variables with which the Boltzmann
transport equation need concern itself are the angle θ about fiber direction (fig. 1) and the depth of penetration, here
taken as coördinate y, into the fiber-laden half-space.

5 Our more primitive method, let it be admitted at the outset, altogether fails to discriminate among electromagnetic polar-
ization states, which, together with rays/wave normals, form a mutually orthogonal triad.

6 This geometrically engaging attribute is, regrettably, passed over in silence by the standard electromagnetics texts (such
as those authored by Stratton, Jackson, Panofsky and Phillips, and so on). Sheltered though it may thus be, its persistent
presence in the literature is securely anchored around [9] and in research papers of the type [10–13] to which it lends support.
One finds there a derivation which relies upon the peculiarities of an essentially two-dimensional field propagation, complete
with reference to the asymptotic behavior of the Hankel functions which figure therein. By contrast, an ab initio derivation
from first principles, altogether liberated from any debt to special function features, can be found in [14]. This minor caveat
notwithstanding, reference [9] is widely regarded as having at least rivaled, if not altogether eclipsed [3].
The manner of derivation adopted by [14] confirms moreover that the conical scattering attribute prevails regardless of cylin-
der cross-sectional shape, and is controlled by the (vector-valued) two-dimensional Fourier transform of the self-consistent
ohmic/polarization currents radiating across that cross section. The currents themselves must of course be ascertained on the
basis of an integral-equation self-consistency argument, or else by enforcement of somewhat more pedestrian boundary-value
continuity requirements.
One may note with some astonishment that [3] restricts itself to the case of a purely perpendicular wave incidence when setting
out the specific details in its treatment of cylindrical scattering.

7 Figure 1 is freely available from the internet under a Google search “cylinder scattering”. Its origin can be traced to [15],
and it reappears on p. 264 of [9].
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Our objectives here are very limited indeed, barely embryonic if one may be permitted to say so. On the one hand,
we shall not venture into the prevailing technology of FRC manufacture, while, on the other, our analysis will merely
seek to provide a methodological preamble to more refined, more sophisticated computations which may yet appear in
the future from the pens of other hands. Indeed, on the methodological side we shall restrict ourselves, as already stated,
to a uniform, uniaxially fibered half-space, and, moreover, to a scattering function within Boltzmann’s equation which
is invariant against azimuthal angle θ around fiber direction (coördinate axis z as indicated in fig. 1). Our primitive
goal will be the interface albedo under plane wave irradiation at azimuthal angle θ0 (and its cosine μ0 = cos θ0),
reckoned from the positive y-axis and arbitrarily chosen in the impact range −π/2 < θ0 < π/2 (see footnote8).

Within these strict confines we shall pursue our albedo target along two routes, one quasi-numerical, based upon
the Boltzmann equation being discretized along angular nodes conforming to a Gaussian quadrature net, the other
more traditionally analytic and relying upon a Wiener-Hopf complex plane machinery. Essentially perfect agreement
will be demonstrated between the albedo outcomes at the end of these distinct routes, and brought to the fore will also
be a standard incoming/outgoing symmetry that harkens back to the Ambartsumian/Chandrasekhar/Case machinery
of invariant embedding [4,5] and [16,17]. All of this, it is hoped, may yet stimulate more refined, more realistic analyses
by other investigators engaged in radiant transport across fibered media.

The material thus described is organized as follows. After an obligatory setup of albedo geometry and the underlying
Boltzmann equation, pride of place is given to the Wiener-Hopf machinery. Sketched next are the very simple details
of transport equation discretization along the nodes of a concatenated Gaussian quadrature lattice extended across the
full, −π < θ < π range of scattering azimuth θ. There follow polar albedo plots across the outgoing range π/2 < |θ| < π,
ϑ = ±||θ| − π|, with special emphasis upon a virtually perfect agreement between calculations having an entirely
dissimilar provenance. Our note then concludes with one or two suggestions as to possible extensions of this work.

2 Albedo setup

Right-handed Cartesian axes, their origin in the half-space boundary, are placed so that horizontal axis z is aligned
with fibers as in fig. 1, axis y points into the scattering medium, while axis x is regarded as the vertical. As already
indicated, azimuthal angle θ, −π < θ < π, is reckoned from axis y, positive or negative when conveying a right-hand
rotation around axis ∓z.

Powerless to change, we betray an atavistic fidelity to the nomenclature of neutron transport by writing now ψ(θ, y)
for the radiative intensity per unit increment of scattering angle θ. The total macroscopic cross section (absorption
plus scattering, σa + σs; dimension of an inverse length) is written as σ, with both of its constituents assumed to be
spatially constant as to both position y and angle θ. Normalization by σ yields the dimensionless single-scattering
albedo ω = σs/σ, 0 ≤ ω < 1 (see footnote9), and an optical path length τ = σy which is y when measured in units
of one mean free path. Playing a key rôle is a probability {P (θ | θ′)/(2π)}dθ that radiant intensity ψ(θ′, τ), arriving
along direction θ′, is scattered into angular increment dθ around θ. One evidently must insist upon the normalization∫ π

−π
P (θ | θ′)dθ = 2π, regardless of incidence angle θ′. In what follows we simply default to the primitive, isotropic

case P (θ | θ′) = 1 regardless of depth τ . In standard notation, μ = cos θ.
With these obligatory definitions duly disposed of, we may simply set down

μ
∂ψ(θ, τ)

∂τ
+ ψ(θ, τ) =

ω

2π

∫ π

−π

ψ(θ′, τ)dθ′ (1)

as our basic energy bookkeeping (Boltzmann) equation10 in the x-y plane transverse to the mandated fiber direction.
8 An accompanying fiber/ray tilt angle −π/2 < φ0 < π/2, as indicated by fig. 1, should likewise be retained in the recesses of

one’s mind, but need not otherwise enter the details of Boltzmann equation calculations.
9 We shall expressly assume here that the fibers absorb to a greater or lesser extent, so that indeed ω < 1. Calculation of

the macroscopic parameters σa,s is a moderately involved electromagnetic task in its own right, one that we do not propose to
undertake here. How such computations must proceed can be found in [3] and [9], and, when scattering cylinders are radially
stratified, in [10–13] and the references cited therein.
10 It has been a credo of radiative transport theory, since at least the publication of [4], that radiant flux requires for its complete
description a four-element Stokes parameter vector. Our present flux ψ, merely in the interest of methodological simplicity,
defaults to merely the top element of this vector, and its submission to Boltzmann’s equation (RTE: radiative transfer/transport
equation, in contemporary parlance) (1) betrays a primitive, phenomenological attitude to radiative transport, an attitude since
refined on the basis of Maxwell’s electromagnetic equations and reported, in chronological order, by [18,19], and [20]. Of
these, [18] is the most succinct, [19] most detailed, whereas [20] threads a wonderful panorama of scientific history into its
critique of the more antiquated phenomenology. Stated in so many words, our radiant flux ψ exempts itself from any obligation
to account for electromagnetic field polarization around propagation cone generators. At the same time one must acknowledge
that radiative polarimetry, which figures prominently in remote sensing of surface irregularities and in geologic prospecting, does
make ample use of the matricial Stokes apparatus. Reference [18] provides the background theory for this terrestrial technology.
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Intensity ψ(θ, τ) is further decomposed as the sum of a Dirac delta function sheet e−τ/μ0δ(θ − θ0) incident at angle
θ0 and properly attenuated thereafter, and a diffuse, multiply scattered component ψd(θ, τ). Thus

ψ(θ, τ) = e−τ/μ0δ(θ − θ0) + ψd(θ, τ). (2)

Decomposition (2) converts the homogeneous equation (1) into an inhomogeneous counterpart

μ
∂ψd(θ, τ)

∂τ
+ ψd(θ, τ) =

ω

2π

∫ π

−π

ψd(θ′, τ)dθ′ +
ω

2π
e−τ/μ0 , (3)

whose source (ω/2π)e−τ/μ0 is now entirely overt. And then, as a boundary condition on (3) we further require that
there be no reëntrant diffuse flux at half-space boundary τ = 0, viz., ψd(θ, 0) = 0 when |θ| ≤ π/2. By contrast, it is
the structure of the escaping, diffuse flux ψd(θ, 0) for π/2 < |θ| < π that we identify with the half-space albedo.

3 Wiener-Hopf solution for ψd(θ, τ )

We displace attention from ψd(θ, τ) per se to its angular aggregate

ρd(τ) =
∫ π

−π

ψd(θ, τ) dθ.

It turns out that nothing is lost thereby since, on the basis of (3), we can further write

ψd(θ, τ) = − ω

2πμ

∫ ∞

τ

ρd(τ ′)e(τ ′−τ)/μdτ ′ +
ω

2π

μ0

μ0 − μ
e−τ/μ0 (4)

throughout the entire retrograde flight range π/2 < |θ| < π, wherein −1 < μ < 0. On setting τ = 0 we see that
knowledge about ρd(τ) provides a direct stepping stone to the desired albedo.

A path to solution for both ψd(θ, τ) and ρd(τ) is cleared by first subjecting these quantities to Laplace transfor-
mation, denoted by a circumflex, viz.,

ψ̂d(θ, s) =
∫ ∞

0

e−sτψd(θ, τ) dτ (5)

ρ̂d(θ, s) =
∫ ∞

0

e−sτρd(θ, τ) dτ, (6)

with transform variable s initially required to have its real part positive subject to restrictions identified in the course
of the ensuing argument. Indeed, we see at once, with τ set equal to zero, that (4) may now be simply rephrased as

ψd(θ, 0) = − ω

2πμ
ρ̂d(−1/μ) +

ω

2π

μ0

μ0 − μ
. (7)

Laplace transformation of (3) next gives

−μψd(θ, 0) + {1 + sμ} ψ̂d(θ, s) =
ω

2π
ρ̂d(s) +

ω

2π

μ0

1 + sμ0
, (8)

which can further be integrated over angle so as to yield
{

1 − ω

2π

∫ π

−π

dθ

1 + sμ

}

ρ̂d(s) =
ω

2π

μ0

1 + sμ0

∫ π

−π

dθ

1 + sμ
+

∫

π/2<|θ|<π

μψd(θ, 0)
1 + sμ

dθ. (9)

The second integral on the right incorporates the null reëntrant flux condition at the half-space boundary τ = 0. Since
it requires knowledge about the albedo, it is a priori unknown. Such information lapse notwithstanding, it is evident
by inspection that that second integral is analytic in a left half-plane having � s < 1.

We embark next on a standard Wiener-Hopf journey wherein the ingredients of (9) are suitably rearranged as
to their left/right half-planes of analyticity, the end result being a recognition of (9) as a bridge uniting ostensibly
disparate, left/right analytic functions into one global entire function bounded at infinity and therefore, by virtue
of Liouville’s theorem, a mere constant. Self-evident asymptotic estimates require that constant to be null, at which
point all solution details fall into their rightful place.
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We begin with the definite integral

I =
∫ π

−π

dθ

1 + sμ
, (10)

which is clearly analytic when |� s| > 0, regardless of � s, but, strictly speaking, is undefined without further qualifi-
cation when instead � s = 0 whereas |� s| > 1. It can be rewritten in the usual way

I =
2
is

∮

|ζ|=1

dζ

ζ2 + 2ζ/s + 1
(11)

as a contour integral around the unit disk |ζ| = |eiθ| = 1 and thus evaluated by adding ±2πi times the sum of its
residues at one, two, or none of the simple poles

ζ± =
{
−1 ± i

√
s2 − 1

} /
s (12)

which its interior/exterior may contain.
In keeping with a precautionary remark above, we provide

√
s2 − 1 =

√
s − 1

√
s + 1 with branch cuts radiating

outward from ±1 to ±∞. Accordingly, i
√

s2 − 1 is real and negative when � s = 0 while −1 < � s < 1. Since also
ζ+ζ− = 1, it follows that only one such pole is actually enclosed, and, because |ζ+| → ∞ as s → 0, whereas ζ− → 0,
that enclosed pole lies at s = ζ∓ in disk interior/exterior11. Hence

I =
2
is

∮

|ζ|=1

dζ

(ζ − ζ+)(ζ − ζ−)
= ± 4π

s(ζ∓ − ζ±)
=

2πi√
s2 − 1

. (13)

Returning now to the main theme, and with the information from (13) explicitly displayed, we execute our first
rearrangement by adding and subtracting μ0/(1 + sμ0) on the right in (9) so as to arrive at

{√
s2 − 1 − iω√

s2 − 1

}

ρ̃d(s) = g(s), (14)

wherein we further abbreviate by setting

ρ̃d(s) = ρ̂d(s) +
μ0

1 + sμ0
, (15)

g(s) =
μ0

1 + sμ0
+

∫

π/2<|θ|<π

μψd(θ, 0)
1 + sμ

dθ. (16)

As is easily ascertained, the numerator on the left in (14) has two simple zeros at12

s± = ±
√

1 − ω2, (17)

whose presence dampens the prospect of its imminent, intended use as the argument of a logarithm. We correct for this
by first dividing out (s− s+)(s− s−) = s2 − s2

± and then compensating for its adverse effect as s → ∞ by multiplying
with s2 − 1 (see footnote13). And so we mold (14) into

(
s2 − s2

±
s2 − 1

)

κ(s) ρ̃d(s) = g(s), (18)

11 We note from (12) that ζ± coincide at ∓1 when s = ±1. In general,

dζ±
d s

=
1

s2

j

1 ± i√
s2 − 1

ff

.

But then, as s descends from s = 1 to s = 0 along its axis of reals, ζ− rises from ζ− = −1 to ζ− = 0, while simultaneously ζ+

migrates downward from ζ+ = −1 to ζ+ = −∞. Upward s movement from s = −1 to s = 0, with � s = 0 throughout, drags ζ−
downward from ζ− = 1 to ζ− = 0, and pushes ζ+ upward from ζ+ = 1 to ζ+ = ∞. Evaluation (13) is thus confirmed along the
entire interval −1 < � s < 1, � s = 0, whence analytic continuation suffices to validate it also for complex arguments s.
12 In an appendix (sect. 3.2.1 below) we show that s± are the propagation constants associated with source-free solutions of (1)
(restated there as (34)). In particular, s−, conveying an unbounded spatial growth exp(−s−τ) for τ → +∞, has relevance for
the kindred, right half-space Milne problem, wherein it represents some unspecified, deeply buried intensity source of unlimited
strength.
13 Beyond this restricted purpose, multiplier s2−1 evidently serves to suppress denominator infinities at branch points s = ±1.
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with

κ(s) =
(s2 − 1){

√
s2 − 1 − iω}

(s2 − s2
±)

√
s2 − 1

. (19)

One immediate, but only partial step toward rearranging (18) so as to achieve a left-hand side analytic in a right
half-plane, and a right-hand side analytic in a left half-plane is to set

(
s + s+

s + 1

)

κ(s) ρ̃d(s) =
(

s − 1
s − s+

)

g(s). (20)

The real difficulty lies in achieving a similar split for function κ(s), a task accomplished via the known recipe of passing
first, seemingly redundantly, to the exponential of its logarithm, and then representing that latter as a Cauchy contour
integral with up/down legs of infinite extent parallel to the imaginary axis of s. And so, if we set, for some real positive
β, 0 < β < s+ (see footnote14),

κ±(s) = exp

(
1

2πi

∫ ±β+i∞

±β−i∞

Log κ(ζ)
ζ − s

dζ

)

, (21)

then we obtain at once the decomposition

κ(s) =
κ+(s)
κ−(s)

, (22)

valid at least in the vertical strip −β < � s < β. Moreover, functions κ±(s) are readily seen to be analytic respectively
across the overlapping left/right half-planes � s < β or else � s > −β, in that order, and indeed to vanish on approach
to infinity, |s| → ∞. Equality (20), when rewritten now as

(
s + s+

s + 1

)
ρ̃d(s)
κ−(s)

=
(

s − 1
s − s+

)
g(s)

κ+(s)
, (23)

represents thus yet another step in segregating quantities that are equal within a band of overlap but, otherwise, assert
their analyticity throughout dissimilar half-planes.

Only one further adjustment remains to make that segregation complete, and that is subtraction from g(s) of its
simple pole at s = −1/μ0. The subtraction must of course occur on both sides of (23), which thus yields

(
s + s+

s + 1

)
ρ̃d(s)
κ−(s)

− μ0(1 + μ0)
κ+(−1/μ0)(1 + μ0s+)(1 + μ0s)

=
(

s − 1
s − s+

)
g(s)

κ+(s)
− μ0(1 + μ0)

κ+(−1/μ0)(1 + μ0s+)(1 + μ0s)
(24)

as a bona fide bounded entire function, null at infinity, and thus null everywhere on the strength of Liouville’s theorem.
But that means that our solution is in hand, inasmuch as (15) gives, first

ρ̂(s) =
μ0(1 + μ0)

κ+(−1/μ0)(1 + μ0s+)
× (s + 1)κ−(s)

(s + s+)(1 + μ0s)
− μ0

1 + μ0s
, (25)

and then the desired albedo follows from (7) as

ψd(θ, 0) = − ω

2πμ
ρ̂d(−1/μ) +

ω

2π

μ0

μ0 − μ

=
ω

2π

μ0(1 + μ0)(1 − μ)κ−(−1/μ)
(μ0 − μ)(1 + μ0s+)(1 − μs+)κ+(−1/μ0)

(26)

with μ < 0, μ0 > 0, so that arguments of κ± properly lie in their respective half-planes of analyticity. Somewhat
greater symmetry in μ0 and μ is attained by noting from (21) that

κ−(−1/μ) = 1/κ+(1/μ) (27)

since, by virtue of (19), κ(s) per se is symmetric, κ(s) = κ(−s), under argument reflection through the origin. On
replacing μ with −μ0 (27) also gives

κ−(1/μ0) = 1/κ+(−1/μ0). (28)

14 The geometric layout of quantities β and s± is illustrated in fig. 2.
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Fig. 2. Contour deformation for calculating κ−(s).

Hence

ψd(θ, 0) =
ω

2π

μ0(1 + μ0)(1 − μ)
(μ0 − μ)(1 + μ0s+)(1 − μs+)

× κ−(1/μ0)κ−(−1/μ)

=
ω

2π

μ0(1 + μ0)(1 − μ)
(μ0 − μ)(1 + μ0s+)(1 − μs+)

× 1
κ+(−1/μ0)κ+(1/μ)

. (29)

Furthermore, if we set15

ψd(θ, 0) = −μ−1D(−μ, μ0) = − 1
μ

{

− ω

2π

μ0μ(1 + μ0)(1 − μ)
(μ0 − μ)(1 + μ0s+)(1 − μs+)κ+(−1/μ0)κ+(1/μ)

}

, (30)

then it follows at once that
D(μ0,−μ) = D(−μ, μ0), (31)

a symmetry under interchange of incoming/outgoing intensity directions at the half-space boundary, reciprocity tra-
ditionally associated with invariant embedding [4,5] and [16,17]. With a view to the first line in (29) it remains
now only to deform the vertical contour whereby κ−(s) is defined in (21) into a form more convenient for numerical
implementation.

3.1 Contour deformation

Of the two options among κ± which eq. (29) provides, we choose the first and proceed to deform its contour around
the branch cut extending from s = −1 to s = −∞, as shown schematically on fig. 2. Potential contributions from
both the semi-circle at infinity and from the full, but vanishingly small circle around the branch point at s = −1 are
dismissed in the usual way, and what remains is the difference of integrating immediately above and below the branch
cut. We thus find in short order that

κ−(s) = exp

[
1
π

∫ ∞

1

tan−1

{
ω

√
ζ2 − 1

}
dζ

ζ + s

]

= exp

[
ω2

π

∫ π/2

0

cot ϑ csc2 ϑ

(s +
√

1 + ω2 cot2 ϑ)
√

1 + ω2 cot2 ϑ
ϑ dϑ

]

, (32)

the second line following under the natural variable substitution

ω
√

ζ2 − 1
= tan ϑ.

15 In a perhaps somewhat nonstandard notation, D stands for diffuse.
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In its latter guise the computation of κ−(s) becomes amenable to numerical integration.
Entirely similar reasoning, but with the contour wrapped now around the complementary branch cut extending

from s = 1 to s = ∞, yields

κ+(s) = exp

[

− 1
π

∫ ∞

1

tan−1

{
ω

√
ζ2 − 1

}
dζ

ζ − s

]

= exp

[
ω2

π

∫ π/2

0

cot ϑ csc2 ϑ

(s −
√

1 + ω2 cot2 ϑ)
√

1 + ω2 cot2 ϑ
ϑ dϑ

]

. (33)

And then, if we recall that (32) holds for � s > −β (in fact, with even less restriction for � s > −1), whereas (33)
requires instead that � s < β (which can be relaxed to the right even so far as � s < 1), it becomes evident that
eqs. (32)-(33) abide by the symmetry embodied in eqs. (27)-(28) and, indeed, can be gotten on the basis of that
symmetry, one from the other, without any additional calculations16.

3.2 Appendix

3.2.1 Free modes

In footnote12, accompanying eq. (17), we had already claimed that quantities s± = ±
√

1 − ω2 are associated with
source-free transport modes. Here we verify this assertion in two ways, the second of which will anticipate a Milne-type
integral equation for radiant density ρd(τ). Hence if we begin with

μ
∂ψ(θ, τ)

∂τ
+ ψ(θ, τ) =

ω

2π

∫ π

−π

ψ(θ′, τ)dθ′ (34)

(eq. (1) restated) and seek a solution having an exponential behavior ψ(θ, τ) = e−λτη(θ), with λ strictly real, we find
in the usual way that (34) requires

1 =
ω

2π

∫ π

−π

dθ

1 − λμ
, (35)

once

e−λτ

∫ π

−π

η(θ)dθ

has been cancelled from both sides. Reference to eqs. (10) and (13) and to the intervening discussion shows next that,
in order to produce on the right in (35) a result that is manifestly real, we must trap λ between −1 and 1, obtaining

1 =
ω√

1 − λ2
, (36)

or else λ = s± as claimed.
The end goal of (17) can likewise be reached by converting (34) to an integral equation for ρ(τ), at least when the

scattering medium fills all of space, −∞ < τ < ∞. Such conversion is easily attained by use of integrating factors,
which give

ψ(θ, τ) =
ω

2πμ

∫ τ

−∞
ρ(τ ′)e−(τ−τ ′)/μdτ ′ (37)

when μ > 0, and

ψ(θ, τ) =
ω

2π|μ|

∫ ∞

τ

ρ(τ ′)e−(τ ′−τ)/|μ|dτ ′ (38)

16 There is a considerable amount of hidden latitude in the choice of vertical contours in (21). Within obvious limits they need
not be placed at strictly the same distance β, left and right, from the imaginary axis, and, again within limits, they could be
allowed to undulate to a certain extent while maintaining overall a steady upward progress. But these are totally dispensable
frivolities, having impact neither upon the transport phenomenology, nor upon the mathematics.
Furthermore, each of κ±(s) as it now stands defines two analytic functions in adjacent, open half-planes filling up the entire two
dimensional s-space, save for a boundary along its vertical integration path. But once again this is a recherché aspect without
physical relevance to our problem, and thus in no need of being belabored.
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if instead μ < 0, the distinction embodying a self-evident physical causality. Integrating over all angles we thus obtain

ρ(τ) =
ω

2π

∫ ∞

−∞
ρ(τ ′)

{∫ π/2

−π/2

e−|τ ′−τ |/μμ−1dθ

}

dτ ′. (39)

Setting ρ(τ) = α e−λτ , with α some irrelevant but positive constant, and real λ less than 1 in magnitude, −1 < λ < 1,
so as to assure quadrature convergence even when μ = 1, we find next, with interchange of integration order taken for
granted17, ∫ τ

−∞
e−λτ ′−(τ−τ ′)/μdτ ′ =

μ

1 − λμ
e−λτ (40)

and ∫ ∞

τ

e−λτ ′−(τ ′−τ)/μdτ ′ =
μ

1 + λμ
e−λτ . (41)

And then, with (40)-(41) brought to bear upon (39) we find

1 =
ω

π

∫ π/2

−π/2

dθ

1 − λ2μ2

=
ω

π(2 − λ2)

∫ π

−π

dθ

1 − λ2μ/(2 − λ2)

=
ω√

1 − λ2
, (42)

which is nothing other than (36) once more18.

3.2.2 Milne-type integral equation

Equations (37)–(39) suggest that an integral equation can likewise be contrived for the somewhat more physically
relevant diffuse density ρd(τ), associated with eq. (3) and having only the half-line τ ≥ 0 for its support. Analogues
to (37)-(38) emerge now as

ψd(θ, τ) =
ω

2πμ

∫ τ

0

ρd(τ ′)e−(τ−τ ′)/μdτ ′ +
ω

2π

μ0

μ0 − μ

(
e−τ/μ0 − e−τ/μ

)
(43)

when μ > 0, and

ψd(θ, τ) =
ω

2π|μ|

∫ ∞

τ

ρd(τ ′)e−(τ ′−τ)/|μ|dτ ′ +
ω

2π

μ0

μ0 − μ
e−τ/μ0 (44)

when instead μ < 0. Integration over all angles then gives

ρd(τ) =
ω

π

∫ ∞

0

ρd(τ ′)

{∫ π/2

0

e−|τ ′−τ |/μμ−1dθ

}

dτ ′

+
ωμ0

π
e−τ/μ0

∫ π/2

0

dθ

μ0 + μ
+

ωμ0

π

∫ π/2

0

(
e−τ/μ0 − e−τ/μ

) dθ

μ0 − μ
. (45)

Of the three angular quadratures on the right in (45), only

∫ π/2

0

dθ

μ0 + μ
=

1
2 sin θ0

log
{

1 + sin θ0

1 − sin θ0

}

(46)

17 That is to say, Fubini’s theorem is assumed to be in force.
18 The middle line of (42) follows from a routine appeal to a half-angle trigonometric formula, whereas its last utilizes the
evaluation of (10) as provided by (13). In this connection one readily verifies that the requisite inequality −1 < λ2/(2−λ2) < 1
is a consequence of having −1 < λ < 1.
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submits to a closed-form evaluation19, the other two20 being considerably more recondite. In particular, the kernel

K(τ ′, τ) =
∫ π/2

0

e−|τ ′−τ |/μμ−1dθ =
∫ ∞

1

e−ζ|τ ′−τ |

ζ
√

ζ2 − 1
dζ (47)

of integral equation (45) mimics its exponential integral analogue

E1(τ ′, τ) =
∫ ∞

1

e−ζ|τ ′−τ |ζ−1dζ (48)

as normally encountered in connection with the Milne problem in a bona fide three-dimensional, isotropic scattering
context [21]. Neither one of the kernels (47)-(48) seems to admit evaluation in closed form. This impediment notwith-
standing, a Wiener-Hopf attack can be successfully mounted in the presence of kernel (48), and so presumably it could
likewise be pursued with that of (47), essentially scrolling the analysis somewhat in reverse. But it is best at this point
to ignore the siren call which beckons from deep within this detour.

4 Discrete ordinates

The Wiener-Hopf apparatus pivots around the global attribute ρd(τ), which no longer retains detailed flux memory
ψd(θ, τ) along individual directions θ. Such details are restored, if only approximately, by discretizing the angular
quadrature and then insisting that eq. (3) remain valid at the angular nodes21.

We thus imagine the discretized angular index l to run from 1 to some chosen N (see footnote22) and organize the
various discretized values ψd(θl, τ) into a column vector

Ψd(τ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ψd(θ1, τ)

ψd(θ2, τ)

...

...

ψd(θN−1, τ)

ψd(θN , τ)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (49)

19 Result (46), confirmed by Mathematica, is obtained by emulating (13), but now in the form of an unlinked contour integral
extended in the complex η-plane from η = −i to η = i,

Z π/2

0

dθ

μ0 + μ
=

1

2

Z π/2

−π/2

dθ

μ0 + μ
= −i

Z i

−i

dη

(η − η+)(η − η−)
,

followed by appeal to a partial fraction decomposition of its integrand. Such decomposition exposes to view derivatives of
logarithms whose ultimate remnant appears on the right in (46). Roots η± from (12) are now modified to read

η± = −μ0 ± i
q

1 − μ2
0 .

They both lie on the unit semicircle to the left, allowing the open contour integral above unfettered rein to advance from η = −i
to η = i on the right.
20 About the third integral we can at least confidently assert, by virtue of its being symmetric in μ and μ0, that it is positive,
so that it poses no danger whatsoever of pushing ρd(τ) into negative, physically forbidden territory. Its integrand, moreover, is
clearly free from singularity at μ = μ0 on the strength of L’Hôpital’s rule. Of course, both first and second angular quadratures
are positive by inspection.
21 A preferred, easily implemented discretization is obtained by partitioning the full, −π < θ < π angular range into any
desired number of contiguous subintervals and, within each such, placing down a Gauss-Legendre (GL) net of some moderately
high order. If 2a is the common subinterval length, then the canonical GL weights w appropriate to the interval (−1, 1) are
correspondingly scaled down, w → aw. The global quadrature itself, evidently, is obtained as a simple sum over subinterval
quadratures. Such concatenated GL discretization is easily deployed and has the merit of avoiding end-point bunching incident
to use of just one master GL cycle of very high order (i.e., having many discretized nodes θ close to and above/below ∓π).
Some interior bunching is of course inevitable, but in general there emerges a much more uniform composite GL net.
22 It is of considerable bookkeeping convenience here to have N divisible by four, with the second and third quartiles alluding
to the forward moving intensity, while the first and fourth, when examined at the boundary τ = 0, underlie the angular albedo
distribution.
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Also required for the source term in (3) is the vector

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1/μ1

1/μ2

...

...
1/μN−1

1/μN

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(50)

and an N × N matrix

Sm,n =
δm,n − ωawn/2π

μm
, (51)

which accounts for the competition between absorption loss and scattering gain23.
It is a matter of empirical evidence that, in the Fortran codes which have been written around these ideas, all

eigenvalues λk of S,
SΛk = λkΛk (52)

with 1 ≤ k ≤ N and Λk being the corresponding eigenvector, have invariably turned out to be both real and distinct.
We are admittedly unable to prove now that such a circumstance will prevail under all admissible parameter entries,
but, should its truth be provisionally accepted as universal, then we are guaranteed by a well-known theorem that
the eigenvector set {Λk}N

k=1 provides a basis for the N -dimensional linear vector space before us. Incidentally, the
eigenvalues {λk}N

k=1 themselves have always been found to split evenly into positive and negative values, {λk}N/2
k=1

all negative, their complement {λk}N
k=N/2+1 all positive, symmetrically deployed in ± couplets, λk = −λN+1−k for

1 ≤ k ≤ N/2. The eigenvalue/eigenbasis framework thus revealed dominates all developments about to ensue, and, in
order to impart a concrete symbolism to that framework, we set

Λk =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Λ1,k

Λ2,k

...

...
ΛN−1,k

ΛN,k

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (53)

We thus duly arrive at

d
dτ

{
eτSΨd(τ)

}
=

ω

2π
e−τ/μ0eτSM =

ω

2π
e−τ/μ0

N∑

k=1

eλkταkΛk (54)

as the discretized counterpart of (3), with real numbers {αk}N
k=1 being the expansion coefficients of source vector (50) in

our newly discovered eigenbasis, obtained by standard methods of linear algebra. Integrating upward from τ = 0 gives24

Ψd(τ) = e−τSΨd(0) +
ωμ0

2π

N∑

k=1

αk

λkμ0 − 1

(
e−τ/μ0 − e−λkτ

)
Λk. (55)

If we next expand Ψd(0) along the eigenbasis,

Ψd(0) =
N∑

k=1

γkΛk, (56)

23 In (51), δm,n is the familiar Kronecker delta, equal to 1 when m = n and 0 otherwise.
24 As was similarly found in connection with the last term on the right in eq. (45), neither does there intrude into (55) any
need to fear encroachment by some one λk > 0 upon 1/μ0. Indeed, in both cases l’Hôpital’s rule saves the day. But, should
such l’Hôpital limit extraction ever be required, we would still be assured of an ultimate asymptotic decay, proceeding now as
τe−τ/μ0 in that particular mode.
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discrete ordinates

Fig. 3. Angular albedo pattern from strongly absorbing medium; single scattering albedo ω = 0.60, incident θ0 = 45 deg;
pattern angle ϑ measured from exterior normal in x-y plane.

with interface amplitudes {γk}N
k=1, we find that

Ψd(τ) =
N∑

k=1

e−λkτγkΛk +
ωμ0

2π

N∑

k=1

αk

λkμ0 − 1

(
e−τ/μ0 − e−λkτ

)
Λk. (57)

Diverging exponentials with λk < 0 are banished at once by setting, for 1 ≤ k ≤ N/2,

γk =
ωμ0αk

2π(λkμ0 − 1)
, (58)

with a complete impunity now as to any menace of having to cope with vanishing denominators, while the remaining
amplitudes γk at indices N/2 + 1 ≤ k ≤ N follow by suppressing any reëntrant flux,

N∑

k=N/2+1

γkΛl,k = −
N/2∑

k=1

γkΛl,k =
ωμ0

2π

N/2∑

k=1

αkΛl,k

1 − λkμ0
, (59)

required now for all l in the range N/4+1 ≤ l ≤ 3N/4. Admittedly the N/2×N/2 linear system (59) is still in need of
its own solution, but that is a relatively standard matter vis-à-vis the wide availability of matrix inversion routines25.

5 Numerical examples

Since we have no wish to inundate the prospective reader with an avalanche of numerical data, we provide just two
albedo examples based on the developments that have been sketched, showing a most welcome agreement between
Wiener-Hopf versus discrete ordinates outcomes, an agreement which surely bolsters confidence in both.

The above analysis has been implemented in Fortran code with both Wiener-Hopf and discrete ordinates viewpoints
running in parallel26. Utility subroutines for eigenvalue/eigenvector computation, linear algebraic system solution, and
numerical integration, the latter on behalf of the Wiener-Hopf albedo result (26) et seq., have all been drawn from the
IMSLIB27 libraries.

The sample computations of figs. 3 and 4 have been performed on an angular grid of 40 concatenated Gaussian
level-10 quadratures, yielding 100 points per quadrant. As a way to ease visualizing a performance comparison, the dis-
crete ordinates outcomes were then simply winnowed down by a factor of 5 so as to yield just 20 points per quadrant. It
should come as no surprise that substantial absorption, as conveyed by a single scattering albedo ω = 0.60 in fig. 3, de-
presses the emergent flux across the board as compared to that from an essentially dissipation-free medium (ω = 0.99)
in fig. 428. The cumulative albedos perpendicular to the boundary and normalized by the similarly perpendicular in-
25 This fresh inversion prospect should not provoke consternation. Indeed, it is understood that by this point we had already
confronted an even more daunting, N × N matrix inversion on behalf of the αk amplitudes first declared in eq. (54).
26 In point of fact our code, at least insofar as its discrete ordinates part is concerned, aims at somewhat greater generality
wherein the fibered, scattering medium has finite thickness and is sandwiched, fore and aft, by uniform, nonscattering dielectric
blankets. All such potential generalizations, however, are simply bypassed, through suitable parameter choice, when undertaking
the calculations now reported in figs. 3 and 4. One may note in passing that computer run times underlying such calculations
are, to all intents and purposes, entirely inconsequential, even on a personal laptop device of modest power.
27 Institute of Mathematical Sciences at the University of California in Berkeley.
28 As their captions already indicate, incidence angle θ0 has been set at 45◦. But, even though we do not dwell on this aspect
here, the albedo patterns are only weakly dependent upon μ0 = cos θ0.
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Fig. 4. Angular albedo pattern from weakly absorbing medium; single scattering albedo ω = 0.99, incident θ0 = 45deg; pattern
angle ϑ measured from exterior normal in x-y plane.

flux, when integrated across the indicated, 200-point angular grid, ring in at 0.29253 . . . in the strong absorption case
(fig. 3), and 1.14332 . . . when instead a pure scattering regime predominates. We are at a loss to provide any physically
credible motivation for the slight horizon bulge in fig. 4, but of course would welcome all plausible suggestions.

6 Comments

It is clear that the work now on view builds directly upon the standard formulation, as found in, say, [17] and [21],
wherein the scattering phenomenon is fully three-dimensional, and the angular analysis is equipped with a weight
appropriate to spherical quadrature. But, of course, as we all know, the devil is ever in the details, so that perhaps
these efforts may yet justify their existence as a model for further work by others.

The next logical step in the adaptation would be to emulate a flux development along the lines of Case-type
singular eigenfunctions. In fact, a first step in this direction had already been taken quite a while ago, and was hastily
assembled for presentation at the 1997 IEEE AP-S/URSI Symposium in Montréal, Canada [22]29. But this foray was
only a hint of what can and should be done, and doubtless remains to this day in need of a patch up. Perhaps such a
patch up may yet be undertaken by the undersigned, and/or at the hands of some other transport enthusiast(s).

And lastly, even though we seem to have shirked excessive contact with the existing transport literature, be its
focus terrestrial or astrophysical, we most certainly have no wish to impart the patently erroneous impression that our
pages furnish the one and only, the solitary foray into the realm of radiative transport across granular, inhomogeneous
media. On the contrary! Our only claim is to attempt a contribution toward the understanding of radiant transport
wherein a prevailing background symmetry, presently of the strictly linear sort, is sufficiently compelling to impress its
stamp upon the propagating field structure. Antecedents in this latter direction, even if their overt concern may appear
to be strictly electromagnetic, can be traced from [10–13], and the present work is a direct echo thereof, transplanted
into its native, transport setting.

By contrast, most available treatments of radiant transport across granular media confine themselves, by virtue of
both available analytic tools and the considerable domains of practical applicability, exemplified by thermal insulation
blankets and polluted atmospheres, to particle and tendril swarms, the latter naturally randomized as to individual
orientation. One such study, authored by Tien, a master of radiant heat transport, and Tong, one of his many students,
can be found in [23], while a later complement, due to Lee, yet another former student, previously cited under [11–13],
is reported as [24].

An early treatment of radiant transport in the presence of particulate dispersal is exemplified by the Purdue
University dissertation of Love, Jr. [25], wherein one finds a vast amount of numerical work implementing a variety
of scattering series solutions. The scope of this numerical effort surely deserves to be judged as monumental when
viewed against the relatively impoverished computing resources available at the time of its creation. By contrast, in
the purely theoretical work reported in [26], Whitaker provides for the temperature a diffusion equation whose highly
modified heat flux seeks to describe porosity effects.

And, while radiant transport theory, seen from an engineering perspective, is well conveyed in the standard pil-
lars [27,28], it is only the latter which devotes much attention to medium inhomogeneities.

29 At first blush an IEEE/URSI conference may seem to be an unlikely, even incongruous venue for transport work of this sort.
The level of incompatibility was lessened, however, by slightly stronger allusions to the obligatory electromagnetic background,
which is barely mentioned in these pages. The present fig. 2 has, incidentally, been drawn from this presentation.
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Thanks are due to an anonymous referee for broadening our viewpoint so as to include reference to kindred astrophysical
research. Even though the format at hand allows for little more than a passing mention of it, we, and hopefully also most
potentials readers, will be sufficiently intrigued to explore the Stokes vector/matricial RTE refinements which it suggests. The
newly encountered conical aspect of field propagation will doubtless render such exploration a non-trivial, intriguing task, a
substantial reworking of the spherical coördinate material found under sources [4], and especially [18–20].

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.
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2. Endrik Krügel, The Physics of Interstellar Dust (Institute of Physics Publishing, Bristol and Philadelphia, 2003).
3. H.C. van de Hulst, Light Scattering by Small Particles (Dover Publications, Inc., New York, 1981).
4. S. Chandrasekhar, Radiative Transfer (Oxford University Press, New York, 1950).
5. V.V. Sobolev, A Treatise on Radiative Transfer (D. Van Nostrand Company, Inc., Princeton, New Jersey, 1963) translated

by S.I. Gaposchkin.
6. M.I. Mishchenko, Kinem. Phys. Cel. Bod. 3, 53 (1987).
7. M.I. Mishchenko, E.G. Yanovitskii, Kinem. Phys. Cel. Bod. 4, 19 (1988).
8. M.I. Mishchenko, J.M. Dlugach, E.G. Janovitskij, J. Quant. Spectrosc. Radiat. Transf. 47, 401 (1992).
9. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic Press, New York, 1969) pp. 255–265.

10. M. Barabas, J. Opt. Soc. Am. A4, 2240 (1987).
11. S.C. Lee, J. Appl. Phys. 68, 4952 (1990).
12. S.C. Lee, J. Opt. Soc. Am. A13, 2256 (1996).
13. Siu-Chun Lee, Jan A. Grzesik, J. Opt. Soc. Am. A15, 163 (1998).
14. J.A. Grzesik, Progr. Electromagn. Res. 40, 255 (2003).
15. M. Kerker, D.D. Cooke, J.M. Carlin, J. Opt. Soc. Am. 60, 1236 (1970).
16. K.M. Case, Rev. Mod. Phys. 29, 651 (1957).
17. Kenneth M. Case, Paul Frederick Zweifel, Linear Transport Theory (Addison-Wesley Publishing Company, Reading, Mas-

sachusetts, 1967).
18. Leung Tsang, Jin Au Kong, Kung-Hau Ding, Scattering of Electromagnetic Waves, Theories and Applications (John Wiley

& Sons, Inc., New York, 2000) pp. 107–166, 259–286.
19. Michael I. Mishchenko, Radiative transfer theory: from Maxwell’s equations to practical applications, in Wave Scattering

from Complex Media: From Theory to Applications, edited by B.A. van Tiggelen, S.E. Skipetrov (Academic Publishers,
Dordrecht, The Netherlands, 2003) pp. 367–414.

20. Michael I. Mishchenko, J. Quant. Spectrosc. Radiat. Transf. 146, 4 (2014).
21. B. Davison, Neutron Transport Theory, with the collaboration of J.B. Sykes (Oxford University Press, 1958) p. 67.
22. J.A. Grzesik, Two-dimensional radiation transport across fibrous media, in 1997 IEEE Antennas and Propagation Society

Symposium and URSI Radio Science Meeting, Montréal, Canada, July 13-18, 1997.
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