Skip to main content
Log in

Understanding performance properties of chemical engines under a trade-off optimization: Low-dissipation versus endoreversible model

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The trade-off criterion is used to systemically investigate the performance features of two chemical engine models (the low-dissipation model and the endoreversible model). The optimal efficiencies, the dissipation ratios, and the corresponding ratios of the dissipation rates for two models are analytically determined. Furthermore, the performance properties of two kinds of chemical engines are precisely compared and analyzed, and some interesting physics is revealed. Our investigations show that the certain universal equivalence between two models is within the framework of the linear irreversible thermodynamics, and their differences are rooted in the different physical contexts. Our results can contribute to a precise understanding of the general features of chemical engines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Curzon, B. Ahlborn, Am. J. Phys. 43, 22 (1975)

    Article  ADS  Google Scholar 

  2. A. Vaudrey, F. Lanzetta, M. Feidt, J. Non-Equilib. Thermodyn. 39, 199 (2014)

    Article  ADS  Google Scholar 

  3. B. Andresen, Angew. Chem. Int. Ed. 50, 2690 (2011)

    Article  Google Scholar 

  4. H.S. Leff, Am. J. Phys. 55, 602 (1987)

    Article  ADS  Google Scholar 

  5. V.A. Mironova, A.M. Tsirlin, V.A. Kazakov, R.S. Berry, J. Appl. Phys. 76, 629 (1994)

    Article  ADS  Google Scholar 

  6. R.S. Berry, V.A. Kazakov, S. Sieniutycz, Z. Szwast, A.M. Tsirlin, Thermodynamics optimization of Finite-Time Processes (Wiley, Chichester, 2000)

  7. C. Van den Broeck, Phys. Rev. Lett. 95, 190602 (2005)

    Article  ADS  Google Scholar 

  8. A. De Vos, J. Phys. Chem. 95, 4534 (1991)

    Article  Google Scholar 

  9. J.M. Gordon, J. Appl. Phys. 73, 8 (1993)

    Article  ADS  Google Scholar 

  10. L. Chen, F. Sun, C. Wu, J. Phys. D 31, 1595 (1998)

    Article  ADS  Google Scholar 

  11. M.J. Ondrechen, R.S. Berry, B. Andresena, J. Chem. Phys. 72, 5118 (1980)

    Article  ADS  Google Scholar 

  12. G. Lin, J. Chen, E. Bruückb, Appl. Energy 78, 123 (2004)

    Article  Google Scholar 

  13. J.M. Gordon, V.N. Orlov, J. Appl. Phys. 74, 5303 (1993)

    Article  ADS  Google Scholar 

  14. J. Guo, Y. Wang, J.C. Chen, J. Appl. Phys. 112, 103504 (2012)

    Article  ADS  Google Scholar 

  15. H. Hooyberghs, B. Cleuren, A. Salazar, J.O. Indekeu, C. Van den Broeck, J. Chem. Phys. 139, 134111 (2013)

    Article  ADS  Google Scholar 

  16. J. Guo, J. Wang, Y. Wang, J.C. Chen, Phys. Rev. E 87, 012133 (2013)

    Article  ADS  Google Scholar 

  17. M. Esposito, R. Kawai, K. Lindenberg, C. Van den Broeck, Phys. Rev. Lett. 105, 150603 (2010)

    Article  ADS  Google Scholar 

  18. C. de Tomás, A.C. Hernández, J.M.M. Roco, Phys. Rev. E 85, 010104(R) (2012)

    Article  ADS  Google Scholar 

  19. F. Angulo-Brown, J. Appl. Phys. 69, 7465 (1991)

    Article  ADS  Google Scholar 

  20. A.C. Hernández, A. Medina, J.M.M. Roco, J.A. White, S. Velasco, Phys. Rev. E 63, 037102 (2001)

    Article  ADS  Google Scholar 

  21. N. Sánchez-Salas, L. López-Palacios, S. Velasco, A.C. Hernández, Phys. Rev. E 82, 051101 (2010)

    Article  ADS  Google Scholar 

  22. C. de Tomás, J.M.M. Roco, A.C. Hernández, Y. Wang, Z.C. Tu, Phys. Rev. E 87, 012105 (2013)

    Article  ADS  Google Scholar 

  23. A.C. Hernández, A. Medina, J.M.M. Roco, New. J. Phys. 17, 075011 (2015)

    Article  Google Scholar 

  24. D. Xia, L.G. Chen, F.R. Sun, J. Energy Inst. 83, 151 (2010)

    Article  Google Scholar 

  25. S. Sieniutycz, Int. J. Heat Mass Transfer 51, 5859 (2008)

    Article  Google Scholar 

  26. N. Sanchez-Salas, J.C. Chimal-Eguia, M.A. Ramirez-Morenoa, Physica A 446, 224 (2016)

    Article  MathSciNet  Google Scholar 

  27. C. Van den Broeck, EPL 101, 10006 (2013)

    Article  ADS  Google Scholar 

  28. M.A. Barranco, A. Ocampo, J.C. Pacheco, F. Angulo, J. Phys.: Conf. Ser. 792, 012097 (2017)

    Google Scholar 

  29. A. Ocampo-Garcia, M.A. Barranco-Jiménez, F. Angulo-Brown, Physica A 488, 149 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  30. J. Gonzalez-Ayala, A.C. Hernandez, J.M.M. Roco, J. Stat. Mech. 2016, 073202 (2016)

    Article  Google Scholar 

  31. R.S. Johal, Phys. Rev. E 96, 012151 (2017)

    Article  ADS  Google Scholar 

  32. J. Gonzalez-Ayala, J.M.M. Roco, A. Medina, A.C. Hernández, Entropy 19, 182 (2017)

    Article  ADS  Google Scholar 

  33. J. Gonzalez-Ayala, J.M.M. Roco, A. Medina, A.C. Hernández, Phys. Rev. E 97, 022139 (2018)

    Article  ADS  Google Scholar 

  34. R. Long, W. Liu, Phys. Rev. E 89, 062119 (2014)

    Article  ADS  Google Scholar 

  35. Y. Zhang, C. Huang, G. Lin, J. Chen, Phys. Rev. E 93, 032152 (2016)

    Article  ADS  Google Scholar 

  36. J. Gonzalez-Ayala, A.C. Hernández, J.M.M. Roco, Phys. Rev. E 95, 022131 (2017)

    Article  ADS  Google Scholar 

  37. R. Long, W. Liu, Phys. Rev. E 91, 042127 (2015)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Bai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, F.R., Zhang, R., Li, H. et al. Understanding performance properties of chemical engines under a trade-off optimization: Low-dissipation versus endoreversible model. Eur. Phys. J. Plus 133, 176 (2018). https://doi.org/10.1140/epjp/i2018-12003-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12003-5

Navigation