Skip to main content
Log in

Quasi-four-body treatment of charge transfer in the collision of protons with atomic helium: II. Second-order non-Thomas mechanisms and the cross sections

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

A fully quantum mechanical four-body treatment of charge transfer collisions between energetic protons and atomic helium is developed here. The Pauli exclusion principle is applied to both the wave function of the initial and final states as well as the operators involved in the interaction. Prior to the collision, the helium atom is assumed as a two-body system composed of the nucleus, He2+, and an electron cloud composed of two electrons. Nonetheless, four particles are assumed in the final state. As the double interactions contribute extensively in single charge transfer collisions, the Faddeev-Lovelace-Watson scattering formalism describes it best physically. The treatment of the charge transfer cross section, under this quasi-four-body treatment within the FWL formalism, showed that other mechanisms leading to an effect similar to the Thomas one occur at the same scattering angle. Here, we study the two-body interactions which are not classically described but which lead to an effect similar to the Thomas mechanism and finally we calculate the total singlet and triplet amplitudes as well as the angular distributions of the charge transfer cross sections. As the incoming projectiles are assumed to be plane waves, the present results are calculated for high energies; specifically a projectile energy of 7.42 MeV was assumed as this is where experimental results are available in the literature for comparison. Finally, when possible we compare the present results with the other available theoretical data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I.M. Cheshire, Proc. Phys. Soc. 84, 89 (1964)

    Article  ADS  Google Scholar 

  2. B.H. Bransden, D.P. Dewangan, Adv. At. Mol. Opt. Phys. 25, 343 (1988)

    Article  Google Scholar 

  3. J.H. McGuire, Adv. At. Mol. Opt. Phys. 29, 217 (1992)

    Article  ADS  Google Scholar 

  4. Dž. Belkić, S. Saini, H.S. Taylor, Phys. Rev. A 36, 1601 (1987)

    Article  ADS  Google Scholar 

  5. H. Marxer, J.S. Briggs, J. Phys. B 25, 3823 (1992)

    Article  ADS  Google Scholar 

  6. E. Ghanbari Adivi, M.A. Bolorizadeh, J. Phys. B 37, 3321 (2004)

    Article  ADS  Google Scholar 

  7. A. Salin, J. Phys. B 3, 937 (1970)

    Article  ADS  Google Scholar 

  8. Dž. Belkić, R. Janev, J. Phys. B 6, 1020 (1973)

    Article  ADS  Google Scholar 

  9. Dž. Belkić, Phys. Scr. 43, 561 (1991)

    Article  ADS  Google Scholar 

  10. S.G. Tolmanov, J.H. McGuire, Phys. Rev. A 62, 032711 (2000)

    Article  ADS  Google Scholar 

  11. L. Gulyás, P.D. Fainstein, T. Shirai, Phys. Rev. A 65, 052720 (2002)

    Article  ADS  Google Scholar 

  12. P.N. Abufager, P.D. Fainstein, A.E. Martínez, R.D. Rivarola, J. Phys. B 38, 11 (2005)

    Article  ADS  Google Scholar 

  13. M.B. Shah, C. McGrath, C. Illescas, B. Pons, A. Riera, H. Luna, D.S.F. Crothers, S.F.C. O’Rourke, H.B. Gilbody, Phys. Rev. A 67, 010704 (2003)

    Article  ADS  Google Scholar 

  14. L. Sarkadi, R.O. Barrachina, Phys. Rev. A 71, 062712 (2005)

    Article  ADS  Google Scholar 

  15. T.R. Bratton, C.L. Cocke, J.R. Macdonald, J. Phys. B 10, L517 (1977)

    Article  ADS  Google Scholar 

  16. C.L. Cocke et al., Phys. Rev. Lett. 36, 782 (1976)

    Article  ADS  Google Scholar 

  17. E. Horsdal-Pedersen, C.L. Cocke, M. Stockli, Phys. Rev. Lett. 50, 1910 (1983)

    Article  ADS  Google Scholar 

  18. E. Horsdal-Pedersen, F. Folkmann, N.H. Pederson, J. Phys. B 15, 739 (1982)

    Article  ADS  Google Scholar 

  19. M. Gudmundsson, D. Fischer, N. Haag, H.A.B. Johansson, D. Misra, P. Reinhed, H. Schmidt-Böcking, R. Schuch, M. Schöffler, K. Støchkel, H.T. Schmidt, H. Cederquist, J. Phys. B 43, 185209 (2010)

    Article  ADS  Google Scholar 

  20. N.V. de Castro Faria, F.L. Freire, A.G. de Inho, Phys. Rev. A 37, 280 (1988)

    Article  ADS  Google Scholar 

  21. H. Atan, W. Steckelmacher, M.W. Lucas, J. Phys. B 24, 2559 (1991)

    Article  ADS  Google Scholar 

  22. K. Støchkel, Electron-transfer processes in fast ion-atom collisions, PhD Thesis, Department of Physics Stockholm University, 2005

  23. H.-K. Kim, M.S. Schöffler, S. Houamer, O. Chuluunbaatar, J.N. Titze, L.Ph.H. Schmidt, T. Jahnke, H. Schmidt-Böcking, A. Galstyan, Yu.V. Popov, R. Dörner, Phys. Rev. A 85, 022707 (2012)

    Article  ADS  Google Scholar 

  24. L.D. Faddeev, Sov. Phys. JEPT 12, 1014 (1961)

    Google Scholar 

  25. E. Ghanbari Adivi, M.J. Brunger, M.A. Bolorizadeh, L. Campbell, Phys. Rev. A 38, 022704 (2007)

    Article  Google Scholar 

  26. M.F. Ferreira da Silva, J.M.P. Serrao, J. Phys. B 36, 2357 (2003)

    Article  ADS  Google Scholar 

  27. D.S.F. Crothers, L.J. Dube, Adv. At. Mol. Phys. 30, 287 (1992)

    Article  ADS  Google Scholar 

  28. L. Sarkadi, L. Lugosi, K. Tökési, L. Gulyás, A. Kövér, J. Phys. B 34, 4901 (2001)

    Article  ADS  Google Scholar 

  29. H.T. Schmidt, A. Fardi, J. Jensen, P. Reinhed, R. Schuch, K. Støchkel, H. Zettergren, H. Cederquist, C.L. Cocke, Nucl. Instrum. Methods Phys. Res. B 233, 43 (2005)

    Article  ADS  Google Scholar 

  30. A.L. Godunov, C.T. Whelan, H.R.J. Walers, V.S. Schipakov, M. Schöffler, V. Mergel, R. Dörner, O. Jagutzki, L.H. Schmidt, J. Titze, H. Schmidt-Böcking, Phys. Rev. A 71, 052712 (2005)

    Article  ADS  Google Scholar 

  31. Y. Hahn, Phys. Rev. A 40, 2950 (1989)

    Article  ADS  Google Scholar 

  32. A. Jain, R. Shingal, T.J.M. Zouros, Phys. Rev. A 43, 1621 (1991)

    Article  ADS  Google Scholar 

  33. P.J. Kramer, Phys. Rev. A 6, 2125 (1972)

    Article  ADS  Google Scholar 

  34. Dž. Belkić, R. Gayet, J. Hanssen, A. Salin, J. Phys. B 19, 2945 (1986)

    Article  ADS  Google Scholar 

  35. M.J. Roberts, J. Phys. B 20, 551 (1987)

    Article  ADS  Google Scholar 

  36. S. Alston, Phys. Rev. A 42, 331 (1990)

    Article  ADS  Google Scholar 

  37. C.J. Jochain, Quantum collision theory (Northern Holland Publishing Company, Oxford, 1975)

  38. I. Mančev, Phys. Rev. A 60, 351 (1999)

    Article  ADS  Google Scholar 

  39. I. Mančev, Phys. Rev. A 64, 012708 (2001)

    Article  ADS  Google Scholar 

  40. Dž. Belkić, R. Gayet, J. Hanssen, I. Mančev, A. Nuñez, Phys. Rev. A 56, 3675 (1997)

    Article  ADS  Google Scholar 

  41. K. Taulbjerg, J.S. Briggs, J. Phys. B 16, 3811 (1983)

    Article  ADS  Google Scholar 

  42. I. Mančev, J. Phys. B 36, 93 (2003)

    Article  ADS  Google Scholar 

  43. I. Mančev, J. Comput. Methods Sci. Eng. 5, 73 (2005)

    Google Scholar 

  44. I. Mančev, Phys. Scr. 51, 762 (1995)

    Article  ADS  Google Scholar 

  45. D.P. Dewangan, B.H. Bransden, J. Phys. B 21, L353 (1988)

    Article  ADS  Google Scholar 

  46. A. Alessandrini, J. Math. Phys. 7, 215 (1966)

    Article  ADS  Google Scholar 

  47. L. Rosenberg, Phys. Rev. 140, B217 (1965)

    Article  ADS  Google Scholar 

  48. A.N. Mitra, J. Gillespie, R. Sugar, N. Panchapakesan, Phys. Rev. 140, B1336 (1965)

    Article  ADS  Google Scholar 

  49. Y. Takahashi, N. Mishima, Progr. Theor. Phys. (Kyoto) 34, 498 (1965)

    Article  ADS  Google Scholar 

  50. N. Mishima, Y. Takahashi, Progr. Theor. Phys. (Kyoto) 35, 440 (1966)

    Article  ADS  Google Scholar 

  51. J.H. Sloan, Phys. Rev. C 6, 6 (1972)

    Google Scholar 

  52. Z. Safarzade, F. Shojaei Akbarabadi, R. Fathi, M.J. Brunger, M.A. Bolorizadeh, Eur. Phys. J. Plus 132, 243 (2017)

    Article  Google Scholar 

  53. Z. Safarzade, R. Fathi, F. Shojaei Akbarabadi, M.A. Bolorizadeh, Eur. Phys. J. Plus 133, 140 (2018)

    Article  ADS  Google Scholar 

  54. J. Schwinger, J. Math. Phys. 5, 1606 (1964)

    Article  ADS  Google Scholar 

  55. G.L. Nutt, J. Math. Phys. 9, 796 (1968)

    Article  ADS  Google Scholar 

  56. C.S. Shastery, L. Kummar, J. Callaway, Phys. Rev. A 1, 1137 (1970)

    Article  ADS  Google Scholar 

  57. J.C.Y. Chen, P.J. Kramer, Phys. Rev. Lett. 27, 899 (1971)

    Article  ADS  Google Scholar 

  58. H. Bateman, Higher Transcendental Functions, vol. 1 (McGraw-Hill, New York, 1953)

  59. J.C.Y. Chen, A.C. Chen, Adv. At. Mol. Phys. 8, 71 (1972)

    Article  ADS  Google Scholar 

  60. M. Sadeghi, M.A. Bolorizadeh, E. GhanbariAdivi, J. Phys. B 43, 035203 (2010)

    Article  ADS  Google Scholar 

  61. M.A. Bolorizadeh, M. Sadeghi, F. Shojaei Akbarabadi, R. Fathi, M.J. Brunger, J. Phys. B 45, 165201 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad A. Bolorizadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safarzade, Z., Akbarabadi, F.S., Fathi, R. et al. Quasi-four-body treatment of charge transfer in the collision of protons with atomic helium: II. Second-order non-Thomas mechanisms and the cross sections. Eur. Phys. J. Plus 133, 172 (2018). https://doi.org/10.1140/epjp/i2018-12001-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12001-7

Navigation