Skip to main content
Log in

Ab initio study on half-metallic, electronic and thermodynamic attributes of LaFeO3

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

By using the density functional theory (DFT) the systematic study of the structural, electronic and thermodynamic properties of lanthanum ferrite (LaFeO3) has been conducted. The elastic stability criterion and structural tolerance factor reveal that LaFeO3 exists in the cubic phase and is found to be stable under the ambient conditions. In electronic properties, the optical spectrum of the compound has been found to fall in the range of 488 to 688nm which has been calculated from the electronic band gap values by using the PBE-GGA and mBJ-GGA techniques. The light between 488 to 688nm would cause the valence electrons to jump in the conduction band showing the photoconductivity. The pronounced half-metallic character has been discussed by using the projected electronic density of states. The ferromagnetic response has been observed which may be attributed to the Fe-O bonding situation. The compound exhibits ductile, indirect band gap and half-metallic traits in the bulk phase. We expect the compound to be felicitous for the novel spintronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Maeda, J. Photochem. Photobiol. C 12, 237 (2011)

    Article  Google Scholar 

  2. Y. Qu, X. Duan, Chem. Soc. Rev. 42, 2568 (2013)

    Article  Google Scholar 

  3. W. Hou, S.B. Cronin, Adv. Funct. Mater. 23, 1612 (2013)

    Article  Google Scholar 

  4. F.E. Osterloh, Chem. Soc. Rev. 42, 2294 (2013)

    Article  Google Scholar 

  5. S. Tariq et al., AIP Adv. 5, 077111 (2015)

    Article  ADS  Google Scholar 

  6. D. Damjanovic, Piezoelectric properties of perovskite ferroelectrics: unsolved problems and future research, in Annales de Chimie Science des Materiaux (Elsevier, 2001)

  7. Q. Jia, A. Iwase, A. Kudo, Chem. Sci. 5, 1513 (2014)

    Article  Google Scholar 

  8. K. Sayama et al., Chem. Commun. 0, 2416 (2001)

    Article  Google Scholar 

  9. N. Nuraje, K. Su, Nanoscale 5, 8752 (2013)

    Article  ADS  Google Scholar 

  10. I. Shein et al., Phys. Solid State 47, 2082 (2005)

    Article  ADS  Google Scholar 

  11. W. Zhang, J. Tang, J. Ye, Chem. Phys. Lett. 418, 174 (2006)

    Article  ADS  Google Scholar 

  12. W.-H. Lin et al., Appl. Phys. Lett. 89, 211904 (2006)

    Article  ADS  Google Scholar 

  13. C. Fong, J. Pask, L. Yang, Half-metallic materials and their properties, Vol. 2 (World Scientific, 2013)

  14. L. Feng et al., J. Magn. & Magn. Mater. 351, 92 (2014)

    Article  ADS  Google Scholar 

  15. I. Zutić, J. Fabian, S.D. Sarma, Rev. Mod. Phys. 76, 323 (2004)

    Article  ADS  Google Scholar 

  16. S.M. Sohail Gilani et al., Chin. J. Phys. 56, 308 (2018)

    Article  Google Scholar 

  17. S. Wolf et al., Science 294, 1488 (2001)

    Article  ADS  Google Scholar 

  18. B. Bouadjemi et al., Solid State Commun. 168, 6 (2013)

    Article  ADS  Google Scholar 

  19. S.N. Tijare et al., Int. J. Hydrogen Energy 37, 10451 (2012)

    Article  Google Scholar 

  20. K. Parida et al., Int. J. Hydrogen Energy 35, 12161 (2010)

    Article  ADS  Google Scholar 

  21. S. Thirumalairajan et al., Rsc Adv. 3, 7549 (2013)

    Article  Google Scholar 

  22. Z.-X. Wei et al., J. Mater. Sci. 48, 1117 (2013)

    Article  ADS  Google Scholar 

  23. T. Arakawa, H. Kurachi, J. Shiokawa, J. Mater. Sci. 20, 1207 (1985)

    Article  ADS  Google Scholar 

  24. K. Huang, H.Y. Lee, J.B. Goodenough, J. Electrochem. Soc. 145, 3220 (1998)

    Article  Google Scholar 

  25. J. Mizusaki et al., J. Am. Ceram. Soc. 65, 363 (1982)

    Article  Google Scholar 

  26. J. Mizusaki et al., J. Am. Ceram. Soc. 66, 247 (1983)

    Article  Google Scholar 

  27. J. Ten Elshof, H. Bouwmeester, H. Verweij, Solid State Ionics 81, 97 (1995)

    Article  Google Scholar 

  28. J. Ten Elshof, H. Bouwmeester, H. Verweij, Solid State Ionics 89, 81 (1996)

    Article  Google Scholar 

  29. E. Traversa et al., Sensors Actuators B 25, 661 (1995)

    Article  Google Scholar 

  30. B. Van Hassel, J. Ten Elshof, H. Bouwmeester, Appl. Catal. A 119, 279 (1994)

    Article  Google Scholar 

  31. M.C. Carotta et al., Sensors Actuators B 44, 590 (1997)

    Article  Google Scholar 

  32. P. Mahadevan, N. Shanthi, D. Sarma, J. Phys.: Condens. Matter 9, 3129 (1997)

    ADS  Google Scholar 

  33. D. Sarma et al., Phys. Rev. Lett. 75, 1126 (1995)

    Article  ADS  Google Scholar 

  34. T. Arima, Y. Tokura, J. Torrance, Phys. Rev. B 48, 17006 (1993)

    Article  ADS  Google Scholar 

  35. W. Koehler, E. Wollan, J. Phys. Chem. Solids 2, 100 (1957)

    Article  ADS  Google Scholar 

  36. Z.-X. Wei et al., J. Hazard. Mater. 165, 1056 (2009)

    Article  Google Scholar 

  37. H. Fan et al., Sensors Actuators B 153, 83 (2011)

    Article  Google Scholar 

  38. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  39. F. Tran, P. Blaha, Phys. Rev. Lett. 102, 226401 (2009)

    Article  ADS  Google Scholar 

  40. V. Celorrio et al., ChemElectroChem 1, 1667 (2014)

    Article  Google Scholar 

  41. P. Blaha, Computer code Wien2k, Vienna University of Technology (2001)

  42. Y. Xie et al., Appl. Phys. Lett. 105, 062110 (2014)

    Article  ADS  Google Scholar 

  43. F. Murnaghan, Proc. Natl. Acad. Sci. 30, 244 (1944)

    Article  ADS  Google Scholar 

  44. V. Goldschmidt, Naturwissenschaften 14, 477 (1926)

    Article  ADS  Google Scholar 

  45. S.M. Selbach et al., J. Solid State Chem. 196, 249 (2012)

    Article  ADS  Google Scholar 

  46. M.D. Scafetta et al., J. Phys.: Condens. Matter 26, 505502 (2014)

    Google Scholar 

  47. K. Peng et al., Sci. Rep. 6, 19723 (2016)

    Article  ADS  Google Scholar 

  48. G. Hearne et al., Phys. Rev. B 51, 11495 (1995)

    Article  ADS  Google Scholar 

  49. P. Kanhere et al., J. Phys. Chem. C 116, 22767 (2012)

    Article  Google Scholar 

  50. S. Nadeem et al., J. Theor. Comput. Chem. 15, 1650044 (2016)

    Article  Google Scholar 

  51. S. Tariq et al., Appl. Phys. A 124, 44 (2018)

    Article  ADS  Google Scholar 

  52. Y.-J. Hao et al., Physica B 382, 118 (2006)

    Article  ADS  Google Scholar 

  53. E. Screiber, O. Anderson, N. Soga, Elastic constants and their measurements (McGrawHill, New York, 1973)

  54. M. Fine, L. Brown, H. Marcus, Scr. Metall. 18, 951 (1984)

    Article  Google Scholar 

  55. D.G. Cahill, S.K. Watson, R.O. Pohl, Phys. Rev. B 46, 6131 (1992)

    Article  ADS  Google Scholar 

  56. J. Cheng et al., J. Mater. Res. 20, 191 (2005)

    Article  ADS  Google Scholar 

  57. B. Karki, G. Ackland, J. Crain, J. Phys.: Condens. Matter 9, 8579 (1997)

    ADS  Google Scholar 

  58. C. Cousins, J. Phys. C 15, 1857 (1982)

    Article  ADS  Google Scholar 

  59. H.-C. Cheng, C.-F. Yu, W.-H. Chen, J. Alloys Compd. 546, 286 (2013)

    Article  Google Scholar 

  60. P. Souvatzis et al., Phys. Rev. B 70, 012201 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saad Tariq.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tariq, S., Saad, S., Jamil, M.I. et al. Ab initio study on half-metallic, electronic and thermodynamic attributes of LaFeO3. Eur. Phys. J. Plus 133, 87 (2018). https://doi.org/10.1140/epjp/i2018-11908-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-11908-1

Navigation