Skip to main content
Log in

Parity-time symmetric coupler in transverse periodic and aperiodic potentials

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The dynamics of the parity-time (PT) symmetric coupler in the presence of transverse periodic and aperiodic potentials have been studied for linear and nonlinear regime. The propagation-invariant solutions of the system have been studied and found that the high-frequency and the low-frequency solitons reside in the minimum of the periodic and aperiodic potentials. The amplitude of the low-frequency mode is greater than that of the high-frequency mode. The high strength of the periodic potential causes the soliton to be more confined in the lattice whereas high depth of the parabolic potential leads to the confinement of the soliton at minimum of the potential. The linear coupler possesses real eigenvalues when the gain/loss coefficient is less than the coupling coefficient for both periodic and aperiodic potentials. The transverse periodic potential modulates the amplitude of the beam and causes the formation of bands in the unbroken regime. The intensity of the beam is trapped in the channel with gain in the case of periodic and aperiodic potentials for nonlinear coupler. When the center of the soliton is initially at minimum of transverse potentials, velocity of the soliton increases. If the center of the soliton is initially at maximum of the periodic potential, it moves with uniform velocity. The linear stability analysis reveals that the high-frequency soliton is stable for both periodic and aperiodic potentials whereas the low-frequency soliton is unstable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Sankar, Principles of Quantum Mechanics, 2nd edition (Plenum Press, New York, 1994)

  2. C.M. Bender, S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  3. C.M. Bender, D.C. Brody, H.F. Jones, Phys. Rev. Lett. 89, 270401 (2002)

    Article  MathSciNet  Google Scholar 

  4. C.M. Bender, S. Boettcher, P.N. Meisinger, J. Math. Phys. 40, 2201 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  5. S. Klaiman, U. Gnther, N. Moiseyev, Phys. Rev. Lett. 101, 080402 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  6. Vladimir V. Konotop, Jianke Yang, Dmitry A. Zezyulin, Rev. Mod. Phys. 88, 035002 (2016)

    Article  ADS  Google Scholar 

  7. A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984)

  8. R. El-Ganainy, K.G. Makris, D.N. Christodoulides, Z.H. Musslimani, Opt. Lett. 32, 2632 (2007)

    Article  ADS  Google Scholar 

  9. K.G. Makris, R. El-Ganainy, D.N. Christodoulides, Phys. Rev. Lett. 100, 103904 (2008)

    Article  ADS  Google Scholar 

  10. Z.H. Musslimani, K.G. Makris, R. El-Ganainy, D.N. Christodoulides, Phys. Rev. Lett. 100, 030402 (2008)

    Article  ADS  Google Scholar 

  11. A. Guo, G.J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G.A. Siviloglou, D.N. Christodoulides, Phys. Rev. Lett. 103, 093902 (2009)

    Article  ADS  Google Scholar 

  12. C.E. Rter, K.G. Makris, R. El-Ganainy, D.N. Christodoulides, M. Segev, D. Kip, Nat. Phys. 6, 192 (2010)

    Article  Google Scholar 

  13. L. Feng, M. Ayache, J. Huang, Y.L. Xu, M.H. Lu, Y.F. Chen, Y. Fainman, A. Scherer, Science 333, 729 (2011)

    Article  ADS  Google Scholar 

  14. F.Kh. Abdullaev, Y.V. Kartashov, V.V. Konotop, D.A. Zezyulin, Phys. Rev. A 83, 041805 (2011)

    Article  ADS  Google Scholar 

  15. A.E. Miroshnichenko, B.A. Malomed, Yu.S. Kivshar, Phys. Rev. A 84, 012123 (2011)

    Article  ADS  Google Scholar 

  16. L. Feng, Z.J. Wong, R. Ma, Y. Wang, X. Zhang, Science 346, 972 (2014)

    Article  ADS  Google Scholar 

  17. H. Hodaei, M.A. Miri, M. Heinrich, D.N. Christodoulides, M. Khajavikhan, Science 346, 975 (2014)

    Article  ADS  Google Scholar 

  18. L. Feng, Y.L. Xu, W.S. Fegadolli, M.H. Lu, J.E.B. Oliveira, V.R. Almeida, Y.F. Chen, A. Scherer, Nat. Mater. 12, 108 (2013)

    Article  ADS  Google Scholar 

  19. G. Lifante, Integrated Photonics: Fundamentals (Wiley, 2003)

  20. Sergey V. Suchkov, Andrey A. Sukhorukov, Jiahao Huang, Sergey V. Dmitriev, Chaohong Lee, Yuri S. Kivshar, Laser Photon. Rev. 10, 177 (2016)

    Article  Google Scholar 

  21. Y.J. Chen, A.W. Snyder, D.N. Payne, IEEE J. Quantum Electron. 28, 239 (1992)

    Article  ADS  Google Scholar 

  22. S.M. Jensen, IEEE J. Quantum Electron. 18, 1580 (1982)

    Article  ADS  Google Scholar 

  23. N.V. Alexeeva, I.V. Barashenkov, A.A. Sukhorukov, Y.S. Kivshar, Phys. Rev. A 85, 063837 (2012)

    Article  ADS  Google Scholar 

  24. B. Daino, G. Gregori, S. Wabnitz, J. Appl. Phys. 58, 4512 (1985)

    Article  ADS  Google Scholar 

  25. K.A. Muhsina, P.A. Subha, Eur. Phys. J. D 69, 171 (1992)

    Article  Google Scholar 

  26. R. Driben, B.A. Malomed, Opt. Lett. 36, 4323 (2011)

    Article  ADS  Google Scholar 

  27. R. Driben, B.A. Malomed, EPL 96, 51001 (2011)

    Article  ADS  Google Scholar 

  28. Y.V. Bludov, V.V. Konotop, B.A. Malomed, Phys. Rev. A 87, 013816 (2013)

    Article  ADS  Google Scholar 

  29. I.V. Barashenkov, S.V. Suchkov, A.A. Sukhorukov, S.V. Dmitriev, Y.S. Kivshar, Phys. Rev. A 86, 053809 (2012)

    Article  ADS  Google Scholar 

  30. Y.V. Bludov, R. Driben, V.V. Konotop, B.A. Malomed, J. Opt. 15, 064010 (2013)

    Article  ADS  Google Scholar 

  31. Wiktor Walasik, Natalia M. Litchinitser, Sci. Rep. 6, 19826 (2016)

    Article  ADS  Google Scholar 

  32. Yannis Kominis, Tassos Bountis, Sergej Flach, Sci. Rep. 6, 33699 (2016)

    Article  ADS  Google Scholar 

  33. Senlin Zhang, Zhengdong Yong, Yuguang Zhang, Sailing He, Sci. Rep. 6, 24487 (2016)

    Article  ADS  Google Scholar 

  34. P.V. Paulau, D. Gomila, T. Ackemann, N.A. Loiko, W.J. Firth, Phys. Rev. E 78, 016212 (2008)

    Article  ADS  Google Scholar 

  35. P.V. Paulau, D. Gomila, P. Colet, N.A. Loiko, N.N. Rosanov, T. Ackemann, W.J. Firth, Opt. Express 18, 8859 (2010)

    Article  ADS  Google Scholar 

  36. Sergey V. Suchkov, B.A. Malomed, Sergey V. Dmitriev, Y.S. Kivshar, Phys. Rev. E 84, 046609 (2011)

    Article  ADS  Google Scholar 

  37. C. Li, G. Xu, L. Ma, N. Dou, H. Gu, J. Opt. A: Pure Appl. Opt. 7, 540 (2005)

    Article  ADS  Google Scholar 

  38. I.V. Barashenkov, G.S. Jackson, S. Flach, Phys. Rev. A 88, 053817 (2013)

    Article  ADS  Google Scholar 

  39. I.V. Barashenkov, Mariagiovanna Gianfreda, J. Phys. A: Math. Theor. 47, 282001 (2014)

    Article  Google Scholar 

  40. G. Burlak, B.A. Malomed, Phys. Rev. E 88, 062904 (2013)

    Article  ADS  Google Scholar 

  41. K.O. Hill, Y. Fujii, D.C. Johnson, B.S. Kawasaki, Appl. Phys. Lett. 32, 647 (1978)

    Article  ADS  Google Scholar 

  42. T. Erdogan, J. Lightwave Technol. 15, 1277 (1997)

    Article  ADS  Google Scholar 

  43. P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988)

  44. B.B. Baizakov, B.A. Malomed, M. Salerno, Europhys. Lett. 63, 5 (2003)

    Article  Google Scholar 

  45. A.D. Martin, Phys. Rev. A. 93, 023631 (2016)

    Article  ADS  Google Scholar 

  46. J. Pickton, J. Susanto, Phys. Rev. A 88, 063840 (2013) arXiv:1307.2788

    Article  ADS  Google Scholar 

  47. S.V. Suchkov, S.V. Dmitriev, A.A. Sukhorukov, I.V. Barashenkov, E.R. Andriyanova, K.M. Badgetdinova, Y.S. Kivshar, Appl. Phys. A 115, 443 (2014)

    Article  ADS  Google Scholar 

  48. J. Yang, J. Comput. Phys. 228, 7007 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  49. Lloyd N. Trefethen, Spectral Methods in Matlab, www.MathWorks.ir

  50. P.A. Subha, C.P. Jisha, V.C. Kuriakose, Pramana 69, 229 (2007)

    Article  ADS  Google Scholar 

  51. P.A. Subha, C.P. Jisha, V.C. Kuriakose, J. Mod. Opt. 54, 1827 (2007)

    Article  ADS  Google Scholar 

  52. P.A. Subha, V.C. Kuriakose, J. Nonlinear Opt. Phys. Mater. 15, 415 (2006)

    Article  ADS  Google Scholar 

  53. K.A. Muhsina, P.A. Subha, Phys. Scr. 89, 075205 (2014)

    Article  ADS  Google Scholar 

  54. T.P. Suneera, P.A. Subha, Waves Random Complex Media 20, 241 (2016)

    Google Scholar 

  55. Sean Nixon, Lijuan Ge, Jianke Yang, Phys. Rev. A 85, 023822 (2012)

    Article  ADS  Google Scholar 

  56. Chandroth P. Jisha, Alessandro Alberucci, Valeriy A. Brazhnyi, Gaetano Assanto, Phys. Rev. A 89, 013812 (2014)

    Article  ADS  Google Scholar 

  57. T.P. Suneera, P.A. Subha, Chaos Solitons Fractals 98, 183 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  58. J. Meier, J. Hudock, D.N. Christodoulides, G. Stegeman, Y. Silberberg, R. Morandotti, J.S. Aitchison, Phys. Rev. Lett. 91, 143907 (2003)

    Article  ADS  Google Scholar 

  59. X. Liu, H. Pu, B. Xiong, W.M. Liu, J. Gong, Phys. Rev. A 79, 013423 (2009)

    Article  ADS  Google Scholar 

  60. D. Feijoo, A. Paredes, H. Michinel, Phys. Rev. A 87, 063619 (2013)

    Article  ADS  Google Scholar 

  61. G. Csire, D. Schumayer, B. Apagyi, Phys. Rev. A 82, 063608 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Subha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suneera, T.P., Subha, P.A. Parity-time symmetric coupler in transverse periodic and aperiodic potentials. Eur. Phys. J. Plus 133, 84 (2018). https://doi.org/10.1140/epjp/i2018-11904-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-11904-5

Navigation