Skip to main content
Log in

Study of the structure of yrast bands of neutron-rich 114-124Pd isotopes

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The projected shell model calculations have been carried out in the neutron-rich 114-124Pd isotopic mass chain. The results have been obtained for the deformation systematics of \(E(2^{+}_{1})\) and \(E(4^{+}_{1})/E({2}^{+}_{1})\) values, BCS subshell occupation numbers, yrast spectra, backbending phenomena, B(E2) transition probabilities and g-factors in these nuclei. The observed systematics of \(E(2^{+}_{1})\) values and \(R_{42}\) ratios in the 114-124Pd isotopic mass chain indicate that there is a decrease of collectivity as the neutron number increases from 68 to 78. The occurrence of backbending in these nuclei as well as the changes in the calculated B(E2) transition probabilities and g -factors predict that there are changes in the structure of yrast bands in these nuclei. These changes occur at the spin where there is crossing of g-band by 2-qp bands. The predicted backbendings and predicted values of B(E2)s and g-factors in some of the isotopes need to be confirmed experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Ahmad, W.R. Phillips, Rep. Prog. Phys. 58, 1415 (1995)

    Article  ADS  Google Scholar 

  2. J.H. Hamilton et al., Prog. Nucl. Part. Phys. 35, 635 (1995)

    Article  ADS  Google Scholar 

  3. X.Q. Zhang et al., Phys. Rev. C 63, 027302 (2001)

    Article  ADS  Google Scholar 

  4. A. Astier et al., Eur. Phys. J. A 50, 2 (2014)

    Article  Google Scholar 

  5. J. Meyer-Ter-Vehn, Nucl. Phys. A 249, 141 (1975)

    Article  ADS  Google Scholar 

  6. P.F. Garrett, J.L. Wood, J. Phys. G 37, 064028 (2010)

    Article  ADS  Google Scholar 

  7. S. Frauendorf, Y. Gu, J. Sun, Int. J. Mod. Phys. E 20, 465 (2011)

    Article  ADS  Google Scholar 

  8. S.K. Chamoli et al., Phys. Rev. C 83, 054318 (2011)

    Article  ADS  Google Scholar 

  9. Y.X. Luo et al., Nucl. Phys. A 874, 32 (2012)

    Article  ADS  Google Scholar 

  10. P. Möller et al., Phys. Rev. Lett. 93, 162502 (2006)

    Article  Google Scholar 

  11. Y.X. Luo et al., Phys. Rev. C 69, 024315 (2004)

    Article  ADS  Google Scholar 

  12. Y.X. Luo et al., Phys. Lett. B 670, 307 (2009)

    Article  ADS  Google Scholar 

  13. I. Stefanescu et al., Nucl. Phys. A 789, 125 (2007)

    Article  ADS  Google Scholar 

  14. K.-H. Kim et al., Nucl. Phys. A 604, 163 (1996)

    Article  ADS  Google Scholar 

  15. L.E. Svensson et al., Nucl. Phys. A 584, 547 (1995)

    Article  ADS  Google Scholar 

  16. A. Dewald et al., Phys. Rev. C 78, 051302(R) (2008)

    Article  ADS  Google Scholar 

  17. Y. Wang et al., Phys. Rev. C 63, 024309 (2001)

    Article  ADS  Google Scholar 

  18. H. Hua et al., Phys. Lett. B 562, 201 (2003)

    Article  ADS  Google Scholar 

  19. M. Houry et al., Eur. Phys. G. A 6, 43 (1999)

    Article  ADS  Google Scholar 

  20. A. Jokinen et al., Eur. Phys. J. A 9, 9 (2000)

    Article  ADS  Google Scholar 

  21. M. Stoyer et al., Nucl. Phys. A 787, 455 (2007)

    Article  ADS  Google Scholar 

  22. J. Aysto et al., Nucl. Phys. A 480, 104 (1988)

    Article  ADS  Google Scholar 

  23. F. Montes et al., Phys. Rev. C 73, 035801 (2006)

    Article  ADS  Google Scholar 

  24. J.L. Durell, Fission Fragment Spectroscopy, in Proceedings of the International Conference on Spectroscopy of Heavy Nuclei (1990)

  25. Y.X. Luo et al., Nucl. Phys. A 919, 67 (2013)

    Article  ADS  Google Scholar 

  26. Dennis Fong, private communications, August 21 (2003) and March 23 (2004)

  27. H. Hua et al., Phys. Rev. C 69, 014317 (2004)

    Article  ADS  Google Scholar 

  28. H. Wang et al., Phys. Rev. C 88, 054318 (2013)

    Article  ADS  Google Scholar 

  29. S. Raman, C.W. Nestor Jr., P. Tikkanen, At. Data Nucl. Data Tables 78, 1 (2001)

    Article  ADS  Google Scholar 

  30. A.G. Smith et al., J. Phys. G: Nucl. Part. Phys. 31, S1433 (2005)

    Article  Google Scholar 

  31. M. Boyukata, E. Ellinger, C. Fransen, J. Jolie, EPJ Web of Conferences 66, 02013 (2014)

    Article  Google Scholar 

  32. H. Machet, JYFL Annual Report (2003)

  33. A.G. Smith et al., Phys. Rev. C 86, 014321 (2012)

    Article  ADS  Google Scholar 

  34. A.G. Smith et al., Phys. Rev. Lett. 73, 2540 (1994)

    Article  ADS  Google Scholar 

  35. P. Van Isacker, G. Puddu, Nucl. Phys. 348, 125 (1980)

    Article  Google Scholar 

  36. A. Giannatiempo, Eur. Phys. J. A 49, 37 (2013)

    Article  ADS  Google Scholar 

  37. A. Pandoh, R. Devi, S.K. Khosa, Phys. Rev. C 59, 129 (1999)

    Article  ADS  Google Scholar 

  38. A. Giannatiempo, A. Nannini, P. Sona, Phys. Rev. C 58, 3316 (1998)

    Article  ADS  Google Scholar 

  39. P. Moller et al., At. Data Nucl. Data Tables 59, 185 (1995)

    Article  ADS  Google Scholar 

  40. P.H. Regan et al., Phys. Rev. C 55, 2305 (1997)

    Article  ADS  Google Scholar 

  41. R. Aryaeinejad et al., Phys. Rev. C 48, 566 (1993)

    Article  ADS  Google Scholar 

  42. J. Stachel, P. Van Isacker, K. Heyde, Phys. Rev. C 25, 650 (1982)

    Article  ADS  Google Scholar 

  43. F. Pan, J.P. Draayer, Nucl. Phys. A 636, 156 (1998)

    Article  ADS  Google Scholar 

  44. K. Zajac, L. Prochniak, K. Pomorski, S.G. Rohozinski, J. Srebrny, Nucl. Phys. A 653, 71 (1999)

    Article  ADS  Google Scholar 

  45. B. Pritychenko, M. Birch, B. Singh, M. Horoi, At. Data Nucl. Data Tables 107, 1 (2016)

    Article  ADS  Google Scholar 

  46. Y.-X. Liu et al., Nucl. Phys. A 858, 11 (2011)

    Article  ADS  Google Scholar 

  47. Y. Sun et al., Phys. Rev. C 80, 054306 (2009)

    Article  ADS  Google Scholar 

  48. R. Chaudhary et al., Nucl. Phys. A 939, 53 (2015)

    Article  ADS  Google Scholar 

  49. K. Hara, Y. Sun, Int. J. Mod. Phys. E 4, 637 (1995)

    Article  ADS  Google Scholar 

  50. Y. Sun, Phys. Scr. 91, 043005 (2016)

    Article  ADS  Google Scholar 

  51. S.G. Nilsson et al., Nucl. Phys. A 131, 1 (1969)

    Article  ADS  Google Scholar 

  52. P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer Verlag, New York, 1980)

  53. T. Bengtsson, I. Ragnarsson, Nucl. Phys. A 436, 14 (1985)

    Article  ADS  Google Scholar 

  54. R.B. Cakirli, R.F. Casten, Phys. Rev. C 78, 041301(R) (2008)

    Article  ADS  Google Scholar 

  55. P. Federman, S. Pittel, Phys. Lett. B 69, 385 (1977)

    Article  ADS  Google Scholar 

  56. P. Federman, S. Pittel, Phys. Lett. B 77, 29 (1978)

    Article  ADS  Google Scholar 

  57. P. Federman, S. Pittel, R. Campos, Phys. Lett. B 82, 9 (1979)

    Article  ADS  Google Scholar 

  58. P. Federman, S. Pittel, Phys. Rev. C 20, 820 (1979)

    Article  ADS  Google Scholar 

  59. J. Zhang et al., Phys. Rev. C 58, R2663 (1998)

    Article  ADS  Google Scholar 

  60. K. Hara, Y. Sun, Nucl. Phys. A 529, 445 (1991)

    Article  ADS  Google Scholar 

  61. Y. Sun, J.L. Egido, Nucl. Phys. A 580, 1 (1994)

    Article  ADS  Google Scholar 

  62. A. Bohr, B.R. Mottelson, Nuclear Structure I (New York, Benjamin, 1969)

  63. B. Castel, S. Towner, Modern Theories of Nuclear Moments (Oxford, Clarendon,1990)

  64. J. Rikovska et al., Phys. Rev. Lett. 85, 1392 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rani Devi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, R., Devi, R. & Khosa, S.K. Study of the structure of yrast bands of neutron-rich 114-124Pd isotopes. Eur. Phys. J. Plus 133, 81 (2018). https://doi.org/10.1140/epjp/i2018-11902-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-11902-7

Navigation