Skip to main content
Log in

A new numerical approximation of the fractal ordinary differential equation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The concept of fractal medium is present in several real-world problems, for instance, in the geological formation that constitutes the well-known subsurface water called aquifers. However, attention has not been quite devoted to modeling for instance, the flow of a fluid within these media. We deem it important to remind the reader that the concept of fractal derivative is not to represent the fractal sharps but to describe the movement of the fluid within these media. Since this class of ordinary differential equations is highly complex to solve analytically, we present a novel numerical scheme that allows to solve fractal ordinary differential equations. Error analysis of the method is also presented. Application of the method and numerical approximation are presented for fractal order differential equation. The stability and the convergence of the numerical schemes are investigated in detail. Also some exact solutions of fractal order differential equations are presented and finally some numerical simulations are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Ali, N.A. Sheikh, I. Khan, M. Saqib, J. Magn. & Magn. Mater. 423, 327 (2017)

    Article  ADS  Google Scholar 

  2. F. Ali, M. Saqib, I. Khan, N.A. Sheikh, Eur. Phys. J. Plus 131, 377 (2016)

    Article  Google Scholar 

  3. F. Ali, S.A.A. Jan, I. Khan, M. Gohar, N.A. Sheikh, Eur. Phys. J. Plus 131, 310 (2016)

    Article  Google Scholar 

  4. M. Al-Refai, Y. Luchko, Appl. Math. Comput. 257, 40 (2015)

    MathSciNet  Google Scholar 

  5. A. Atangana, B.S.T. Alkahtani, Entropy 17, 4439 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  6. A. Atangana, B. Dumitru, Therm. Sci. 20, 763 (2016)

    Article  Google Scholar 

  7. A. Atangana, I. Koca, Chaos, Soliton Fractals 89, 447 (2016)

    Article  ADS  Google Scholar 

  8. A. Atangana, Appl. Math. Comput. 273, 948 (2016)

    MathSciNet  Google Scholar 

  9. M. Caputo, M. Fabrizio, Progr. Fract. Differ. Appl. 1, 73 (2015)

    Google Scholar 

  10. E.F. Doungmo Goufo, M.K. Pene, N. Jeanine, Open Math. 13, 839 (2015)

    MathSciNet  Google Scholar 

  11. R. Gnitchogna, A. Atangana, Numer. Methods Part. Differ. Equ. (2017) https://doi.org/10.1002/num.22216

  12. D.W. Brzezinski, Appl. Math. Nonlinear Sci. 1, 23 (2016)

    Article  Google Scholar 

  13. R.B. Gnitchogna, A. Atangana, Int. J. Math. Mod. Methods Appl. Sci. 9, 105 (2015)

    Google Scholar 

  14. M.T. Gencoglu, H.M. Baskonus, H. Bulut, AIP Conf. Proc. 1798, 020103 (2017)

    Article  Google Scholar 

  15. S. Kumar, X.B. Yin, D. Kumar, Adv. Mech. Eng. 7, 1 (2015)

    Google Scholar 

  16. K.M. Owolabi, Chaos, Solitons Fractals 93, 89 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  17. K.M. Owolabi, Commun. Nonlinear Sci. Numer. Simul. 44, 304 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  18. W. Chen, Chaos, Soliton Fractals 28, 9239 (2016)

    Google Scholar 

  19. R. Kanno, Physica A 248, 165 (1998)

    Article  ADS  Google Scholar 

  20. W. Chen, H.G. Sun, X. Zhang, D. Korosak, Comput. Math. Appl. 59, 1754 (2010)

    Article  MathSciNet  Google Scholar 

  21. J.H. Cushman, D.O.’ Malley, M. Park, Phys. Rev. E 79, 032101 (2009)

    Article  ADS  Google Scholar 

  22. F. Mainardi, A. Mura, G. Pagnini, Int. J. Differ. Equ. 29, 104505 (2010)

    Google Scholar 

  23. W. Chen, X.D. Zhang, D. Korosak, Int. J. Nonlinear Sci. Numer. 11, 3 (2010)

    Google Scholar 

  24. A. Atangana, Chaos, Soliton Fractals 102, 396 (2017)

    Article  ADS  Google Scholar 

  25. A. Latif, Fixed Point Theor. Appl. 2009, 170140 (2009)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonal Jain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atangana, A., Jain, S. A new numerical approximation of the fractal ordinary differential equation. Eur. Phys. J. Plus 133, 37 (2018). https://doi.org/10.1140/epjp/i2018-11895-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-11895-1

Navigation