Skip to main content
Log in

Geometrically nonlinear resonance of higher-order shear deformable functionally graded carbon-nanotube-reinforced composite annular sector plates excited by harmonic transverse loading

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

This article presents an attempt to study the nonlinear resonance of functionally graded carbon-nanotube-reinforced composite (FG-CNTRC) annular sector plates excited by a uniformly distributed harmonic transverse load. To this purpose, first, the extended rule of mixture including the efficiency parameters is employed to approximately obtain the effective material properties of FG-CNTRC annular sector plates. Then, the focus is on presenting the weak form of discretized mathematical formulation of governing equations based on the variational differential quadrature (VDQ) method and Hamilton’s principle. The geometric nonlinearity and shear deformation effects are considered based on the von Kármán assumptions and Reddy’s third-order shear deformation plate theory, respectively. The discretization process is performed via the generalized differential quadrature (GDQ) method together with numerical differential and integral operators. Then, an efficient multi-step numerical scheme is used to obtain the nonlinear dynamic behavior of the FG-CNTRC annular sector plates near their primary resonance as the frequency-response curve. The accuracy of the present results is first verified and then a parametric study is presented to show the impacts of CNT volume fraction, CNT distribution pattern, geometry of annular sector plate and sector angle on the nonlinear frequency-response curve of FG-CNTRC annular sector plates with different edge supports.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Ashrafi, P. Hubert, S. Vengallatore, Nanotechnology 17, 4895 (2006)

    Article  ADS  Google Scholar 

  2. S.C. Tjong, Carbon nanotube reinforced composites: metal and ceramic matrices (John Wiley & Sons, 2009)

  3. V. Unnikrishnan, G. Unnikrishnan, J. Reddy, F. Rostam-Abadi, Int. J. Mech. Mater. Des. 9, 181 (2013)

    Article  Google Scholar 

  4. S.B. Sinnott, R. Andrews, Crit. Rev. Solid State Mater. Sci. 26, 145 (2001)

    Article  ADS  Google Scholar 

  5. X.-Q. Fang, C.-S. Zhu, J.-X. Liu, X.-L. Liu, Physica B 529, 41 (2018)

    Article  ADS  Google Scholar 

  6. C.-S. Zhu, X.-Q. Fang, J.-X. Liu, H.-Y. Li, Eur. J. Mech. A/Solids 66, 423 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  7. V.P. Veedu, A. Cao, X. Li, K. Ma, C. Soldano, S. Kar et al., Nat. Mater. 5, 457 (2006)

    Article  ADS  Google Scholar 

  8. K. Sun, J. Yu, C. Zhang, X. Zhou, Mater. Lett. 66, 92 (2012)

    Article  Google Scholar 

  9. K.-T. Lau, C. Gu, G.-H. Gao, H.-y. Ling, S.R. Reid, Carbon 42, 426 (2004)

    Article  Google Scholar 

  10. Y. Sun, Q. Chen, Appl. Phys. Lett. 95, 021901 (2009)

    Article  ADS  Google Scholar 

  11. L. Shao, R. Luo, S. Bai, J. Wang, Compos. Struct. 87, 274 (2009)

    Article  Google Scholar 

  12. P. Kumar, J. Srinivas, Compos. Struct. 177, 158 (2017)

    Article  Google Scholar 

  13. S. Tagrara, A. Benachour, M.B. Bouiadjra, A. Tounsi, Steel Compos. Struct. 19, 1259 (2015)

    Article  Google Scholar 

  14. J. Jam, Y. Kiani, Compos. Struct. 125, 586 (2015)

    Article  Google Scholar 

  15. R. Ansari, J. Torabi, Compos. Part B: Eng. 95, 196 (2016)

    Article  Google Scholar 

  16. N. George, P. Jeyaraj, S. Murigendrappa, Int. J. Struct. Stabil. Dyn. 17, 1750064 (2016)

    Article  Google Scholar 

  17. R. Ansari, J. Torabi, M.F. Shojaei, E. Hasrati, Compos. Struct. 157, 398 (2016)

    Article  Google Scholar 

  18. L. Zhang, Z. Lei, K. Liew, Compos. Struct. 122, 172 (2015)

    Article  Google Scholar 

  19. A. Alibeigloo, K. Liew, Int. J. Appl. Mech. 7, 1550002 (2015)

    Article  Google Scholar 

  20. M. Nejati, A. Asanjarani, R. Dimitri, F. Tornabene, Int. J. Mech. Sci. 130, 383 (2017)

    Article  Google Scholar 

  21. S. Kamarian, M. Salim, R. Dimitri, F. Tornabene, Int. J. Mech. Sci. 108, 157 (2016)

    Article  Google Scholar 

  22. E.A. Shahrbabaki, A. Alibeigloo, Compos. Struct. 111, 362 (2014)

    Article  Google Scholar 

  23. P. Phung-Van, M. Abdel-Wahab, K. Liew, S. Bordas, H. Nguyen-Xuan, Compos. Struct. 123, 137 (2015)

    Article  Google Scholar 

  24. L. Zhang, Z. Lei, K. Liew, J. Yu, Comput. Methods Appl. Mech. Eng. 273, 1 (2014)

    Article  ADS  Google Scholar 

  25. Z. Lei, K.M. Liew, J. Yu, Comput. Methods Appl. Mech. Eng. 256, 189 (2013)

    Article  ADS  Google Scholar 

  26. H.-S. Shen, Compos. Part B: Eng. 43, 1030 (2012)

    Article  Google Scholar 

  27. H.-S. Shen, Y. Xiang, Compos. Part B: Eng. 52, 311 (2013)

    Article  Google Scholar 

  28. K. Liew, Z. Lei, J. Yu, L. Zhang, Comput. Methods Appl. Mech. Eng. 268, 1 (2014)

    Article  ADS  Google Scholar 

  29. L.-L. Ke, J. Yang, S. Kitipornchai, Compos. Struct. 92, 676 (2010)

    Article  Google Scholar 

  30. R. Ansari, M.F. Shojaei, V. Mohammadi, R. Gholami, F. Sadeghi, Compos. Struct. 113, 316 (2014)

    Article  Google Scholar 

  31. R. Ansari, E. Hasrati, M.F. Shojaei, R. Gholami, A. Shahabodini, Physica E 69, 294 (2015)

    Article  ADS  Google Scholar 

  32. R. Ansari, T. Pourashraf, R. Gholami, A. Shahabodini, Compos. Part B: Eng. 90, 267 (2016)

    Article  Google Scholar 

  33. L. Zhang, K. Liew, J. Reddy, Comput. Methods Appl. Mech. Eng. 298, 1 (2016)

    Article  ADS  Google Scholar 

  34. H.-S. Shen, Y. Xiang, Compos. Struct. 111, 291 (2014)

    Article  Google Scholar 

  35. M. Rafiee, X. He, K. Liew, Int. J. Non-Linear Mech. 59, 37 (2014)

    Article  ADS  Google Scholar 

  36. R. Gholami, R. Ansari, Y. Gholami, Compos. Struct. 174, 45 (2017)

    Article  Google Scholar 

  37. H. Wu, S. Kitipornchai, J. Yang, Appl. Math. Model. 42, 735 (2017)

    Article  MathSciNet  Google Scholar 

  38. R. Ansari, R. Gholami, Compos. Struct. 154, 707 (2016)

    Article  Google Scholar 

  39. A. Alibeigloo, Compos. Struct. 118, 482 (2014)

    Article  Google Scholar 

  40. H.-S. Shen, Z.H. Zhu, Comput. Mater. Contin. 18, 155 (2010)

    Google Scholar 

  41. Z.-X. Wang, H.-S. Shen, Nonlinear Dyn. 70, 735 (2012)

    Article  Google Scholar 

  42. M.R. Nami, M. Janghorban, Adv. Compos. Mater. 24, 439 (2015)

    Article  Google Scholar 

  43. A. Setoodeh, M. Shojaee, Polym. Compos. (2017) https://doi.org/10.1002/pc.24289

  44. R. Ansari, J. Torabi, M.F. Shojaei, Compos. Part B: Eng. 109, 197 (2017)

    Article  Google Scholar 

  45. H. Hedayati, B.S. Aragh, Appl. Math. Comput. 218, 8715 (2012)

    MathSciNet  Google Scholar 

  46. M. Mohammadzadeh-Keleshteri, H. Asadi, M. Aghdam, Compos. Struct. 171, 100 (2017)

    Article  Google Scholar 

  47. R. Ansari, J. Torabi, R. Hassani, Comput. Math. Appl. (2017) https://doi.org/10.1016/j.camwa.2017.09.022

  48. M. Keleshteri, H. Asadi, Q. Wang, Comput. Methods Appl. Mech. Eng. 325, 689 (2017)

    Article  ADS  Google Scholar 

  49. E. Ventsel, T. Krauthammer, Thin plates and shells: theory: analysis, and applications (CRC Press, 2001)

  50. I.E. Harik, S. Pashanasangi, J. Struct. Eng. 111, 1517 (1985)

    Article  Google Scholar 

  51. S. Vaidyanathan, H. Busby, D. Houser, Comput. Struct. 51, 255 (1994)

    Article  Google Scholar 

  52. T. Anderson, A. Nayfeh, B. Balachandran, J. Vib. Acoust. 118, 21 (1996)

    Article  Google Scholar 

  53. T. Anderson, A. Nayfeh, B. Balachandran, Nonlinear Dyn. 11, 17 (1996)

    Article  Google Scholar 

  54. T. Anderson, B. Balachandran, A. Nayfeh, Trans. ASME-L J. Vib. Acoust. 116, 480 (1994)

    Article  Google Scholar 

  55. M.F. Shojaei, R. Ansari, Appl. Math. Model. 49, 705 (2017)

    Article  MathSciNet  Google Scholar 

  56. A.M. Esawi, M.M. Farag, Mater. Des. 28, 2394 (2007)

    Article  Google Scholar 

  57. J. Fidelus, E. Wiesel, F. Gojny, K. Schulte, H. Wagner, Compos. Part A: Appl. Sci. Manufact. 36, 1555 (2005)

    Article  Google Scholar 

  58. H.-S. Shen, Compos. Struct. 91, 9 (2009)

    Article  Google Scholar 

  59. R. Ansari, M. Faghih Shojaei, R. Gholami, Compos. Struct. 136, 669 (2016)

    Article  Google Scholar 

  60. R. Ansari, R. Gholami, Acta Astron. 118, 72 (2016)

    Article  Google Scholar 

  61. R. Ansari, R. Gholami, Int. J. Appl. Mech. 8, 1650053 (2016)

    Article  Google Scholar 

  62. R. Ansari, R. Gholami, A. Shahabodini, J. Mech. 32, 539 (2016)

    Article  Google Scholar 

  63. S. Ibrahim, B. Patel, Y. Nath, Int. J. Non-Linear Mech. 44, 1073 (2009)

    Article  ADS  Google Scholar 

  64. H.B. Keller, Numerical solution of bifurcation and nonlinear eigenvalue problems, in Applications of Bifurcation Theory, edited by P.H. Rabinowitz (Academic Press, 1977) pp. 359--384

  65. Y. Han, J. Elliott, Comput. Mater. Sci. 39, 315 (2007)

    Article  Google Scholar 

  66. M. Griebel, J. Hamaekers, Comput. Methods Appl. Mech. Eng. 193, 1773 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raheb Gholami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholami, R., Ansari, R. Geometrically nonlinear resonance of higher-order shear deformable functionally graded carbon-nanotube-reinforced composite annular sector plates excited by harmonic transverse loading. Eur. Phys. J. Plus 133, 56 (2018). https://doi.org/10.1140/epjp/i2018-11874-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-11874-6

Navigation