Skip to main content
Log in

Solitary waves of surface plasmon polariton via phase shifts under Doppler broadening and Kerr nonlinearity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Surface Plasmon Polaritons (SPPs) are theoretically investigated at the interface of a dielectric metal and gold. The output pulse from the dielectric is used as the input pulse for the generation of SPPs. The SPPs show soliton-like behavior at the interface. The solitary form of a SPP is maintained under the effects of Kerr nonlinearity, Doppler broadening and Fresnel dragging whereas its phase shift is significantly modified. A 0.3radian phase shift is calculated in the presence of both Kerr nonlinearity and Fresnel dragging in the absence of plasma motion. The phase shift is enhanced to 60radian due to the combined effect of Doppler broadening, Kerr nonlinearity and Fresnel dragging. The results may have significant applications in nano-photonics, optical tweezers, photovoltaic devices, plasmonster and sensing technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Kneipp, Phys. Today 60, 40 (2007) issue No. 11

    Article  Google Scholar 

  2. A. Shalabney, I. Abdulhalim, Laser Photon. Rev. 5, 571 (2011)

    Article  Google Scholar 

  3. A.J. Haes et al., MRS Bull. 30, 368 (2005)

    Article  Google Scholar 

  4. P.J. Reece, Nat. Photon. 2, 333 (2008)

    Article  ADS  Google Scholar 

  5. M.L. Juan, M. Righini, R. Quidant, Nat. Photon. 5, 349 (2011)

    Article  ADS  Google Scholar 

  6. E. Ozbay, Science 311, 189 (2006)

    Article  ADS  Google Scholar 

  7. Z. Han, S.I. Bozhevolny, Rep. Prog. Phys. 76, 016402 (2013)

    Article  ADS  Google Scholar 

  8. A. Vakil, N. Engheta, Science 332, 1291 (2011)

    Article  ADS  Google Scholar 

  9. H.J. Xu et al., Appl. Phys. Lett. 100, 243110 (2012)

    Article  ADS  Google Scholar 

  10. C. Girard, Rep. Prog. Phys. 68, 1883 (2005)

    Article  ADS  Google Scholar 

  11. J. Müller, B. Rech, J. Springer, M. Vanecek, Sol. Energy 77, 917 (2004)

    Article  ADS  Google Scholar 

  12. J. Meier et al., Sol. Energy Mater. Sol. Cells 74, 457 (2002)

    Article  Google Scholar 

  13. S. Zeng et al., Chem. Soc. Rev. 43, 3426 (2014)

    Article  Google Scholar 

  14. Y.V. Bludov, M.I. Vasilevskiy, N.M.R. Peres, EPL 92, 68001 (2010)

    Article  ADS  Google Scholar 

  15. M. Crassee Orlita et al., Nano Lett. 12, 2470 (2012)

    Article  ADS  Google Scholar 

  16. K.V. Sreekanth et al., Sci. Rep. 2, 737 (2012)

    Article  Google Scholar 

  17. H. Schmidt, A. Imomoglu, Opt. Lett. 21, 1936 (1996)

    Article  ADS  Google Scholar 

  18. B.A. Bacha, F. Ghafoor, I. Ahmad, A. Rahman, Laser Phys. 24, 055401 (2014)

    Article  ADS  Google Scholar 

  19. Y. Wu, L. Deng, Phys. Rev. Lett. 93, 143904 (2004)

    Article  ADS  Google Scholar 

  20. C. Ottaviani, S. Rebic, D. Vitali, P. Tombesi, Eur. Phys. J. D 40, 281 (2006)

    Article  ADS  Google Scholar 

  21. A.A. Khan, B.A. Bacha, R.A. Khan, Phys. Lett. A 380, 3724 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  22. M.M. Kash, V.A. Sautenkov, Phys. Rev. Lett. 82, 5229 (1999)

    Article  ADS  Google Scholar 

  23. A. Kasapi, M. Jain, G.Y. Yin, S.E. Haris, Phys. Rev. Lett. 74, 2447 (1995)

    Article  ADS  Google Scholar 

  24. H. Rahman, M.S.A. Jabar, A.A. Khan, I. Ahmad, B.A. Bacha, Laser Phys. 24, 115404 (2014)

    Article  ADS  Google Scholar 

  25. E. Feigenbaum, M. Orenstein, Opt. Lett. 32, 6 (2007)

    Article  Google Scholar 

  26. M. Chauvet et al., Opt. Lett. 34, 1804 (2009)

    Article  ADS  Google Scholar 

  27. N.J. Zabusky, M.D. Kruskal, Phys. Rev. Lett. 15, 6 (1965)

    Article  Google Scholar 

  28. K.S. Chichak, Science 304, 1308 (2004)

    Article  ADS  Google Scholar 

  29. S.F. Arnold et al., Science 333, 65 (2011)

    Article  ADS  Google Scholar 

  30. A. Ali, B.A. Bacha, M.S.A. Jabar, A.A. Khan, R. Uddin, I. Ahmad, Laser Phys. 333, 65 (2016)

    Google Scholar 

  31. N. khan, B.A. Bacha, A. Iqbal, A. Rahman, A. Afaq, Phys. Rev. A 96, 013848 (2017)

    Article  ADS  Google Scholar 

  32. M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997)

  33. S. Kuang, P. Du, R. Gang, Opt. Express 16, 11604 (2008)

    Article  ADS  Google Scholar 

  34. M.S. Shahriar, G.S. Pati, R. Tripathi, V. Gopal, M. Messall, K. Salit, Phys. Rev. A 75, 053807 (2007)

    Article  ADS  Google Scholar 

  35. P.C. Kuan, C. Huang, W.S. Chan, S. Kosen, S.Y. Lan, Nat. Commun. 7, 13030 (2016)

    Article  ADS  Google Scholar 

  36. J. Zhang, L. Zhang, W. Xu, J. Phys. D: Appl. Phys. 45, 113001 (2012)

    Article  ADS  Google Scholar 

  37. H.N. Yun, M.E. Kim, Y.J. Jang, M.S. Shahriar, Opt. Express 19, 6705 (2011)

    Article  ADS  Google Scholar 

  38. T.J.M. Boyd, J.J. Sanderson, The Physics of Plasmas (Cambridge University Press, New York, 2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Bacha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, S., Ahmad, A., Bacha, B.A. et al. Solitary waves of surface plasmon polariton via phase shifts under Doppler broadening and Kerr nonlinearity. Eur. Phys. J. Plus 132, 506 (2017). https://doi.org/10.1140/epjp/i2017-11760-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11760-9

Navigation