Skip to main content
Log in

Thermal stress control using waste steel fibers in massive concretes

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract.

One of the important subjects in massive concrete structures is the control of the generated heat of hydration and consequently the potential of cracking due to the thermal stress expansion. In the present study, using the waste turnery steel fibers in the massive concretes, the amount of used cement was reduced without changing the compressive strength. By substituting a part of the cement with waste steel fibers, the costs and the generated hydration heat were reduced and the tensile strength was increased. The results showed that by using 0.5% turnery waste steel fibers and consequently, reducing to 32% the cement content, the hydration heat reduced to 23.4% without changing the compressive strength. Moreover, the maximum heat gradient reduced from 18.5% in the plain concrete sample to 12% in the fiber-reinforced concrete sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.H. Kadri, R. Duval, Constr. Build. Mater. 23, 3388 (2009)

    Article  Google Scholar 

  2. Y. Ballim, P.C. Graham, Mater. Struct. 42, 803 (2009)

    Article  Google Scholar 

  3. A.S.M.A. Awal, I.A. Shehu, Fuel 105, 728 (2013)

    Article  Google Scholar 

  4. Y.R. Kima, B.S. Khilb, S.J. Jangc, W.C. Choid, H.D. Yunc, Thermochim. Acta 613, 100 (2015)

    Article  Google Scholar 

  5. H. Shahrabadi, S. Sayareh, H. Sarkardeh, Civ. Eng. J. 2, 623 (2017)

    Google Scholar 

  6. H. Shahrabadi, S. Sayareh, H. Sarkardeh, to be published in China Ocean Eng. (2017)

  7. Y. Mohammadi, S.P. Singh, S.K. Kaushik, Constr. Build. Mater. 22, 956 (2008)

    Article  Google Scholar 

  8. M.S. Meddah, M. Bencheikh, Constr. Build. Mater. 23, 3196 (2009)

    Article  Google Scholar 

  9. S.B. Kim, N.H. Yi, H.Y. Kim, J.-H.J. Kim, Y.-C. Song, Cem. Concr. Compos. 32, 232 (2010)

    Article  Google Scholar 

  10. D. Foti, A. Romanazzi, Ceramurg. Ceram. Acta XXXXI, 109 (2011)

    Google Scholar 

  11. D. Foti, S. Vacca, Mater. Constr. 63, 267 (2013)

    Article  Google Scholar 

  12. D. Foti, F. Paparella, Mech. Res. Commun. 57, 57 (2014)

    Article  Google Scholar 

  13. D. Foti, Constr. Build. Mater. 112, 202 (2016)

    Article  Google Scholar 

  14. M.A. Barkhordari Bafghi, F. Amini, H. Safayenikoo, H. Sarkardeh, Appl. Sci. 7, 1011 (2017)

    Article  Google Scholar 

  15. F. Amini, M.A. Barkhordari, H. Safayenikoo, H. Sarkardeh, to be published in Mater. Sci. (2017)

  16. A. Khaloo, E. Molaei Raisi, P. Hosseini, H. Tahsiri, Constr. Build. Mater. 51, 179 (2014)

    Article  Google Scholar 

  17. H. Mazaheripour, S. Ghanbarpour, S.H. Mirmoradi, I. Hosseinpour, Constr. Build. Mater. 25, 351 (2011)

    Article  Google Scholar 

  18. N. Banthia, P. Gupta, C. Yan, Mater. Struct. 32, 563 (1999)

    Article  Google Scholar 

  19. D.Y. Yoo, Y.S. Yoon, Compos. Mater. 48, 695 (1999)

    Article  Google Scholar 

  20. J.C. Chern, C.H. Young, J. Cem. Compos. Concr. 11, 205 (1989)

    Article  Google Scholar 

  21. E.G. Taengua, S. Arango, J.R. Martí-Vargas, P. Serna, Constr. Build. Mater. 65, 321 (2014)

    Article  Google Scholar 

  22. P. Sorushian, Z. Bayasi, ACI Mater. J. 88, 129 (1991)

    Google Scholar 

  23. C.D. Johnston, R.W. Zemp, ACI Mater. J. 88, 373 (1991)

    Google Scholar 

  24. T. Paskova, C. Meyer, ACI Mater. J. 94, 273 (1997)

    Google Scholar 

  25. Y. Ding, W. Kusterle, Cem. Concr. Res. 34, 1827 (1991)

    Google Scholar 

  26. N. Ganesan, K.P. Shivananda, Spacing and width of cracks in polymer modified steel fiber reinforced concrete flexural members, in Composite Materials in Concrete Construction, edited by R.K. Dhir, K.A. Paine, M.D. Newlands (Thomas Telford, 2002) pp. 245--253

  27. V.S. Vairagade, K.S. Kene, Proc. Eng. 51, 132 (2013)

    Article  Google Scholar 

  28. F. Aslani, S. Nejadi, Compos. Part B 53, 121 (2013)

    Article  Google Scholar 

  29. P. Ramadoss, Int. J. Civ. Eng. 12, 96 (2013)

    Google Scholar 

  30. V.M. Sounthararajan, A. Sivakumar, Struct. Civ. Eng. 7, 429 (2013)

    Article  Google Scholar 

  31. S. Iqbal, A. Ali, K. Holschemacher, T.A. Bier, Constr. Build. Mater. 98, 325 (2015)

    Article  Google Scholar 

  32. S.P. Yap, K.R. Khaw, U.J. Alengaram, M.Z. Jumaat, Eng. Struct. 101, 24 (2015)

    Article  Google Scholar 

  33. K.H. Mo, U.J. Alengaram, M.Z. Jumaat, M.Y.J. Liu, Constr. Build. Mater. 95, 686 (2015)

    Article  Google Scholar 

  34. M.S. Hassan, Z.M. Al-Azawi, M.J. Taher, Arab. J. Sci. Eng. 41, 3969 (2016)

    Article  Google Scholar 

  35. B.W. Xu, H.S. Shi, Constr. Build. Mater. 23, 3468 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Bakhshi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarabi, S., Bakhshi, H., Sarkardeh, H. et al. Thermal stress control using waste steel fibers in massive concretes. Eur. Phys. J. Plus 132, 491 (2017). https://doi.org/10.1140/epjp/i2017-11758-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11758-3

Navigation