Skip to main content
Log in

Heavy particle decay studies using different versions of nuclear potentials

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The heavy particle decay from 212-240Pa , 219-245Np , 228-246Pu , 230-249Am , and 232-252Cm leading to doubly magic 208Pb and its neighboring nuclei have been studied using fourteen versions of nuclear potentials. The study has shown that the barrier penetrability as well as the decay half-lives are found to vary with the nuclear potential used. The investigated decay events of the emission of the clusters 22Ne , 24Ne , 26Mg , 28Mg , 32Si and 33Si are not experimentally detected yet but may be detectable in the future. As most of the half-lives predicted are found to lie within the experimental upper limit, T 1/2 < 1030 s, our predictions will be a guide to future experimental design. The GN plots studied are linear for different cluster emissions from different parents with varying slopes and intercepts. Also, it is to be noted that the linearity of the GN plots is unaltered using different nuclear potentials. The universal curve studied ( log10 T 1/2 vs. -ln P for various clusters emitted from various parents shows a linear behavior with the same slope and intercept irrespective of the nuclear potential used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Sandulescu, D.N. Poenaru, W. Greiner, Sovt. J. Part. Nucl. 11, 528 (1980)

    Google Scholar 

  2. H.J. Rose, G.A. Jones, Nature 307, 245 (1984)

    Article  ADS  Google Scholar 

  3. R. Bonetti, A. Guglielmetti, Rom. Rep. Phys. 59, 301 (2007)

    Google Scholar 

  4. D.N. Poenaru, R.A. Gherghescu, W. Greiner, Phys. Rev. C 85, 034615 (2012)

    Article  ADS  Google Scholar 

  5. D.N. Poenaru, R.A. Gherghescu, W. Greiner, Phys. Rev. Lett. 107, 062503 (2011)

    Article  ADS  Google Scholar 

  6. Y.J. Shi, W.J. Swiatecki, Nucl. Phys. A 438, 450 (1985)

    Article  ADS  Google Scholar 

  7. Y.J. Shi, W.J. Swiatecki, Nucl. Phys. A 464, 205 (1987)

    Article  ADS  Google Scholar 

  8. D.N. Poenaru, M. Ivascu, A. Sandulescu, W. Greiner, J. Phys. G: Nucl. Part. Phys. 10, 183 (1984)

    Article  ADS  Google Scholar 

  9. D.N. Poenaru, W. Greiner, J. Phys. G: Nucl. Part. Phys. 17, 443 (1991)

    Article  ADS  Google Scholar 

  10. D.N. Poenaru, M. Ivascu, A. Sandulescu, W. Greiner, Phys. Rev. C 32, 572 (1985)

    Article  ADS  Google Scholar 

  11. D.N. Poenaru, R.A. Gherghescu, Pramana 85, 415 (2015)

    Article  ADS  Google Scholar 

  12. D.N. Poenaru, Y. Nagame, R.A. Gherghescu, W. Greiner, Phys. Rev. C 65, 054308 (2002)

    Article  ADS  Google Scholar 

  13. D.N. Poenaru, W. Greiner, Phys. Scripta 44, 427 (1991)

    Article  ADS  Google Scholar 

  14. D.N. Poenaru, R.A. Gherghescu, N. Carjan, EPL 77, 62001 (2007)

    Article  ADS  Google Scholar 

  15. D.N Poenaru, D. Schnabel, W. Greiner, D. Mazilu, R. Gherghescu, At. Data Nucl. Data Tables 48, 231 (1991)

    Article  ADS  Google Scholar 

  16. D.N. Poenaru, Nuclear Decay Modes, Vol. 27, Issue17 (Institute of Physics Publishing, Bristol, 1996)

  17. D.N Poenaru, in Clusters in Nuclei, Vol. 1, Lecture Notes in Physics, Vol. 818, edited by C. Beck (Springer, Berlin, 2010) chapt. 1

  18. D.N. Poenaru, R.A. Gherghescu, EPL 118, 22001 (2017)

    Article  ADS  Google Scholar 

  19. D.N. Poenaru, I.H. Plonski, R.A. Gherghescu, W. Greiner, J. Phys. G: Nucl. Part. Phys. 32, 122 (2006)

    Article  Google Scholar 

  20. G. Shanmugam, B. Kamalaharan, Phys. Rev. C 38, 1377 (1988)

    Article  ADS  Google Scholar 

  21. G.A. Pik-Pichak, Yad. Fiz, Sov. J. Nucl. Phys. 44, 923 (1986)

    Google Scholar 

  22. B. Buck, A.C. Merchant, Phys. Rev. C 39, 2097 (1989)

    Article  ADS  Google Scholar 

  23. B. Buck, A.C. Merchant, S.M. Perez, J. Phys. G: Nucl. Part. Phys. 17, 91 (1991)

    Article  ADS  Google Scholar 

  24. K.P. Santhosh, A. Joseph, Pramana 55, 375 (2000)

    Article  ADS  Google Scholar 

  25. S.S. Malik, R.K. Gupta, Phys. Rev. C 39, 1992 (1989)

    Article  ADS  Google Scholar 

  26. R.K. Gupta, D. Bir, M. Balasubramaniam, W. Scheid, J. Phys. G: Nucl. Part. Phys. 26, 1373 (2000)

    Article  ADS  Google Scholar 

  27. M. Balasubramaniam, S. Kumarasamy, N. Arunachalam, Phys. Rev. C 70, 017301 (2004)

    Article  ADS  Google Scholar 

  28. S.K. Arun, R.K. Gupta, Phys. Rev. C 79, 064616 (2009)

    Article  ADS  Google Scholar 

  29. S.K. Arun, R.K. Gupta, Phys. Rev. C 80, 034317 (2009)

    Article  ADS  Google Scholar 

  30. B.B. Singh, S.K. Patra, R.K. Gupta, Phys. Rev. C 82, 014607 (2010)

    Article  ADS  Google Scholar 

  31. J.M. Dong, H.F. Zhang, J.Q. Li, W. Scheid, Eur. Phys. J. A 41, 197 (2009)

    Article  ADS  Google Scholar 

  32. I. Dutt, R.K. Puri, Phys. Rev. C 81, 064609 (2010)

    Article  ADS  Google Scholar 

  33. W. Reisdorf, J. Phys. G: Nucl. Part. Phys. 20, 1297 (1994)

    Article  ADS  Google Scholar 

  34. I. Dutt, R.K. Puri, Phys. Rev. C 81, 064608 (2010)

    Article  ADS  Google Scholar 

  35. Y.J. Yao, G.L. Zhang, W.W. Qu, J.Q. Qian, Eur. Phys. J. A 51, 122 (2015)

    Article  ADS  Google Scholar 

  36. R. Kumar, Phys. Rev. C 86, 044612 (2012)

    Article  ADS  Google Scholar 

  37. R. Kumar, M.K. Sharma, Phys. Rev. C 85, 054612 (2012)

    Article  ADS  Google Scholar 

  38. G.L. Zhang, Y.J. Yao, M.F. Guo, M. Pan, G.X. Zhang, X.X. Liu, Nucl. Phys. A 951, 86 (2016)

    Article  ADS  Google Scholar 

  39. R. Bass, Phys. Rev. Lett. 39, 265 (1977)

    Article  ADS  Google Scholar 

  40. V.Y. Denisov, Phys. Lett. B 526, 315 (2002)

    Article  ADS  Google Scholar 

  41. K.P. Santhosh, Jayesh George Joseph, Sabina Sahadevan, Phys. Rev. C 82, 064605 (2010)

    Article  ADS  Google Scholar 

  42. K.P. Santhosh, B. Priyanka, Nucl. Phys. A 929, 20 (2014)

    Article  ADS  Google Scholar 

  43. K.P. Santhosh, Pramana 85, 447 (2015)

    Article  ADS  Google Scholar 

  44. K.P. Santhosh, Indu Sukumaran, B. Priyanka, Nucl. Phys. A 935, 28 (2015)

    Article  ADS  Google Scholar 

  45. K.P. Santhosh, Indu Sukumaran, Can. J. Phys. 95, 31 (2016)

    Article  ADS  Google Scholar 

  46. K.P. Santhosh, Indu Sukumaran, Braz. J. Phys. 46, 754 (2016)

    Article  ADS  Google Scholar 

  47. K.P. Santhosh, P.V. Subha, B. Priyanka, Pramana 86, 819 (2016)

    Article  ADS  Google Scholar 

  48. K.P. Santhosh, B. Priyanka, M.S. Unnikrishnan, AIP Conf. Proc. 1524, 135 (2013)

    Article  ADS  Google Scholar 

  49. K.P. Santhosh, B. Priyanka, M.S. Unnikrishnan, Nucl. Phys. A 889, 29 (2012)

    Article  ADS  Google Scholar 

  50. K.P. Santhosh, B. Priyanka, Eur. Phys. J. A 49, 66 (2013)

    Article  ADS  Google Scholar 

  51. Indu Sukumaran, K.P. Santhosh, IOSR J. Appl. Phys. 2, 1 (2017)

    Article  Google Scholar 

  52. K.P. Santhosh, Indu Sukumaran, Eur. Phys. J. A 53, 136 (2017)

    Article  ADS  Google Scholar 

  53. J. Blocki, J. Randrup, W.J. Swiatecki, C.F. Tsang, Ann. Phys. 105, 427 (1977)

    Article  ADS  Google Scholar 

  54. J. Blocki, W.J. Swiatecki, Ann. Phys. 132, 53 (1981)

    Article  ADS  Google Scholar 

  55. P. Moller, J.R. Nix, Nucl. Phys. A 361, 117 (1981)

    Article  ADS  Google Scholar 

  56. W.D. Myers, W.J. Swiatecki, Phys. Rev. C 62, 044610 (2000)

    Article  ADS  Google Scholar 

  57. W.D. Myers, W.J. Swiatecki, Nucl. Phys. A 336, 267 (1980)

    Article  ADS  Google Scholar 

  58. B. Nerlo-Pomorska, K. Pomorski, Z. Phys. A 348, 169 (1994)

    Article  ADS  Google Scholar 

  59. G. Royer, R. Rousseau, Eur. Phys. J. A 42, 541 (2009)

    Article  ADS  Google Scholar 

  60. R. Bass, Phys. Lett. B 47, 139 (1973)

    Article  ADS  Google Scholar 

  61. R. Bass, Nucl. Phys. A 231, 45 (1974)

    Article  ADS  Google Scholar 

  62. P.R. Christensen, A. Winther, Phys. Lett. B 65, 19 (1976)

    Article  ADS  Google Scholar 

  63. A. Winther, Nucl. Phys. A 594, 203 (1995)

    Article  ADS  Google Scholar 

  64. H. Ngo, C. Ngo, Nucl. Phys. A 348, 140 (1980)

    Article  ADS  Google Scholar 

  65. R. Kumar, Phys. Rev. C 84, 044613 (2011)

    Article  ADS  Google Scholar 

  66. I. Dutt, R. Bansal, Chin. Phys. Lett. 27, 112402 (2010)

    Article  Google Scholar 

  67. V.Y. Denisov, H. Ikezoe, Phys. Rev. C 72, 064613 (2005)

    Article  ADS  Google Scholar 

  68. K.N. Huang, M. Aoyagi, M.H. Chen, B. Crasemann, H. Mark, At. Data Nucl. Data Tables 18, 243 (1976)

    Article  ADS  Google Scholar 

  69. M. Wang, G. Audi, A.H. Wapstra, F.G. Kondev, M. MacCormick, X. Xu, B. Pfeiffer, Chin. Phys. C 36, 1603 (2012)

    Article  Google Scholar 

  70. A. Bohr, B.R. Mottelson, D. Pines, Phys. Rev. C 110, 936 (1958)

    Article  ADS  Google Scholar 

  71. W.A. Friedman, arXiv:0911.0634v1 [nucl-th] (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. P. Santhosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santhosh, K.P., Sukumaran, I. Heavy particle decay studies using different versions of nuclear potentials. Eur. Phys. J. Plus 132, 431 (2017). https://doi.org/10.1140/epjp/i2017-11743-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11743-x

Navigation