Skip to main content
Log in

A biomedical solicitation examination of nanoparticles as drug agents to minimize the hemodynamics of a stenotic channel

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

A theoretical examination is presented in this analysis to study the flow of a bio-nanofluid through a curved stenotic channel. The curved channel is considered with an overlapping stenotic region. The effect of convective conditions is incorporated to discuss the heat transfer characteristic. The mathematical problem of a curved stenotic channel is formulated and then solved by using the exact technique. To discuss the hemodynamics of a curved stenotic channel the expression of resistance to blood is evaluated by dividing the channel into pre-stenotic, stenotic and post stenotic region. In this investigation gold, silver and copper nanoparticles are used as drug carriers. The outcomes of the graphical illustration reveal that with an increase in nanoparticle concentration hemodynamics effects of stenosed curved channel are reduced and they also conclude that the drug Au nanoparticles are more effective to minimize hemodynamics when compared to the drug Ag and Cu nanoparticles. This analysis finds valuable theoretical information for nanoparticles used as drug agents in the field of bio-inspired applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Cavalcanti, Appl. Math. Lett. 28, 387 (1995)

    Google Scholar 

  2. C. Tu, M. Deville, L. Dheur, L. Vanderschuren, J. Biomech. 25, 1141 (1992)

    Article  Google Scholar 

  3. E. Belardinelli, S. Cavalcanti, Comput. Biol. Med. 21, 1 (1991)

    Article  Google Scholar 

  4. A. Ahmed, S. Nadeem, J. Mol. Liq. 216, 615 (2016)

    Article  Google Scholar 

  5. Kh.S. Mekheimer, M.H. Haroun, M.A. El Kot, Can. J. Phys. 89, 201 (2011)

    Article  ADS  Google Scholar 

  6. G.T. Liu, X.J. Wang, B.Q. Ai, L.G. Liu, Chin. J. Phys. 42, 401 (2004)

    Google Scholar 

  7. B.E. Morgan, D.F. Young, J. Math. Biol. 36, 39 (1974)

    Google Scholar 

  8. K.V. Wong, O.D. Leon, Adv. Mech. Eng. 2010, 519659 (2010)

    Article  Google Scholar 

  9. K. Aslan, T.A.J. Grell, Clin. Chem. 57, 5746 (2011)

    Article  Google Scholar 

  10. S. Shaw, P.V.S.N. Murthy, P. Sibanda, Microvasc. Res. 85, 77 (2013)

    Article  Google Scholar 

  11. B. Godin, J.H. Sakamoto, R.E. Serda, A. Grattoni, A. Bouamrani, M. Ferrari, Trends Pharmacol. Sci. 31, 199 (2010)

    Article  Google Scholar 

  12. F. Gentile, M. Ferrari, P. Decuzzi, Ann. Biomed. Eng. 36, 254 (2007)

    Article  Google Scholar 

  13. S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, in Developments and applications of non-Newtonian flows, edited by D.A. Siginer, H.P. Wang, Vol. 36 (ASME, 1995) pp. 99--105

  14. S. Nadeem, S. Ijaz, Int. J. Heat Mass Transfer 93, 1137 (2015)

    Article  Google Scholar 

  15. S. Nadeem, S. Ijaz, J. Magn. & Magn. Mater. 410, 230 (2016)

    Article  ADS  Google Scholar 

  16. N.S. Akbar, A.W. Butt, Comput. Methods Prog. Biomed. 134, 43 (2016)

    Article  Google Scholar 

  17. S. Nadeem, I. Shahzadi, Commun. Theor. Phys. 64, 547 (2015)

    Article  ADS  Google Scholar 

  18. R. Ellahi, S.U. Rahman, S. Nadeem, N.S. Akbar, Appl. Nanosci. 4, 919 (2014)

    Article  Google Scholar 

  19. F.M. Abbasi, T. Hayat, B. Ahmad, G.Q. Chen, Plos One 9, e105440 (2014)

    Article  ADS  Google Scholar 

  20. Y. Jiang, C. Reynolds, C. Xiao, W. Feng, Z. Zhou, W. Rodriguez, S.C. Tyagi, J.W. Eaton, J.T. Saari, Y.J. Kang, J. Exp. Med. 204, 657 (2007)

    Article  Google Scholar 

  21. N.S. Akbar, A.W. Butt, Appl. Math. Comput. 259, 231 (2015)

    Article  MathSciNet  Google Scholar 

  22. P.K. Mandal, Int. J. Non-Linear Mech. 40, 151 (2005)

    Article  ADS  Google Scholar 

  23. G.C. Shit, M. Roy, J. Mech. Med. Biol. 11, 643 (2011)

    Article  Google Scholar 

  24. P. Brunn, Rheol. Acta 14, 1039 (1975)

    Article  Google Scholar 

  25. Y. Nubar, Biophys. J. 11, 252 (1971)

    Article  ADS  Google Scholar 

  26. R. Ponalagusamy, J. Appl. Sci. 7, 1071 (2007)

    Article  ADS  Google Scholar 

  27. S. Ijaz, S. Nadeem, Int. J. Therm. Sci. 109, 401 (2016)

    Article  Google Scholar 

  28. Y. Yildirim, S.A. Sezer, Math. Comput. Model. 52, 618 (2010)

    Article  Google Scholar 

  29. A. Sinha, G.C. Shit, P.K. Kundu, ISRN Biomed. Eng. (2013) https://doi.org/10.1155/2013/925876

  30. D. Biswas, U.S. Chakraborty, Appl. Math. Sci. 4, 2865 (2010)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ijaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ijaz, S., Nadeem, S. A biomedical solicitation examination of nanoparticles as drug agents to minimize the hemodynamics of a stenotic channel. Eur. Phys. J. Plus 132, 448 (2017). https://doi.org/10.1140/epjp/i2017-11703-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11703-6

Navigation