Skip to main content
Log in

Stochastic resonance in overdamped systems with fractional power nonlinearity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The stochastic resonance phenomenon in overdamped systems with fractional power nonlinearity is thoroughly investigated. The first kind of nonlinearity is a general fractional power function. The second kind of nonlinearity is a fractional power function with deflection. For the first case, the response is clearly divergent for some fractional exponent values. The curve of the spectral amplification factor versus the fractional exponent presents some discrete regions. For the second case, the response will not be divergent for any fractional exponent value. The spectral amplification factor decreases with the increase in the fractional exponent. For both cases, the nonlinearity is the necessary ingredient to induce stochastic resonance. However, it is not the sufficient cause to amplify the weak signal. On the one hand, the noise cannot induce stochastic resonance in the corresponding linear system. On the other hand, the spectral amplification factor of the nonlinear system is lower than that of the corresponding linear system. Through the analysis carried out in this paper, we are able to find that the system with fractional deflection nonlinearity is a better stochastic resonance system, especially when an appropriate exponent value is chosen. The results in this paper might have a certain reference value for signal processing problems in relation with the stochastic resonance method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Benzi, A. Sutera, A. Vulpiani, J. Phys. A: Math. Gen. 14, L453 (1981)

    Article  ADS  Google Scholar 

  2. R. Benzi, G. Parisi, A. Sutera, A. Vulpiani, Tellus 34, 10 (1982)

    Article  ADS  Google Scholar 

  3. B. McNamara, K. Wiesenfeld, R. Roy, Phys. Rev. Lett. 60, 2626 (1988)

    Article  ADS  Google Scholar 

  4. G. Vemuri, R. Roy, Phys. Rev. A 39, 4668 (1989)

    Article  ADS  Google Scholar 

  5. P. Hänggi, ChemPhysChem 3, 285 (2002)

    Article  Google Scholar 

  6. K. Wiesenfeld, F. Moss, Nature 373, 33 (1995)

    Article  ADS  Google Scholar 

  7. J.K. Douglass, L. Wilkens, E. Pantazelou, F. Moss, Nature 365, 337 (1993)

    Article  ADS  Google Scholar 

  8. B.J. Gluckman, T.I. Netoff, E.J. Neel, W.L. Ditto, M.L. Spano, S.J. Schiff, Phys. Rev. Lett. 77, 4098 (1996)

    Article  ADS  Google Scholar 

  9. Z. Gao, B. Hu, G. Hu, Phys. Rev. E 65, 016209 (2001)

    Article  ADS  Google Scholar 

  10. M. Ozer, M. Perc, M. Uzuntarla, Phys. Lett. A 373, 964 (2009)

    Article  ADS  Google Scholar 

  11. V.S. Rallabandi, P.K. Roy, Imaging 28, 1361 (2010)

    Google Scholar 

  12. Y. Yang, Z. Jiang, B. Xu, D.W. Repperger, J. Phys. A: Math. Theor. 42, 145207 (2009)

    Article  ADS  Google Scholar 

  13. H. Zhang, B. Xu, J. Li, Z.P. Jiang, Probab. Eng. Mech. 25, 119 (2010)

    Article  Google Scholar 

  14. Y.G. Leng, T.Y. Wang, Y. Guo, Y.G. Xu, S.B. Fan, Mech. Syst. Signal Process. 21, 138 (2007)

    Article  ADS  Google Scholar 

  15. R. Zheng, K. Nakano, H. Hu, D. Su, M.P. Cartmell, J. Sound Vib. 333, 2568 (2014)

    Article  ADS  Google Scholar 

  16. B.J. Breen, J.G. Rix, S.J. Ross, Y. Yu, J.F. Lindner, N. Mathewson, E.R. Wainwright, I. Wilson, Phys. Rev. E 94, 062205 (2016)

    Article  ADS  Google Scholar 

  17. H. Li, W. Qin, W. Deng, R. Tian, Eur. Phys. J. Plus 131, 60 (2016)

    Article  Google Scholar 

  18. X. Liu, H. Liu, J. Yang, G. Litak, G. Cheng, S. Han, Mech. Syst. Signal Process. 96, 58 (2017)

    Article  ADS  Google Scholar 

  19. Z. Qiao, Y. Lei, J. Lin, F. Jia, Mech. Syst. Signal Process. 84, 731 (2017)

    Article  ADS  Google Scholar 

  20. S. Lu, Q. He, H. Zhang, F. Kong, Mech. Syst. Signal Process. 85, 82 (2017)

    Article  ADS  Google Scholar 

  21. V. Berdichevsky, M. Gitterman, Phys. Rev. E 60, 1494 (1999)

    Article  ADS  Google Scholar 

  22. Y. Jin, W. Xu, M. Xu, T. Fang, J. Phys. A: Math. Gen. 38, 3733 (2005)

    Article  ADS  Google Scholar 

  23. H. Calisto, F. Mora, E. Tirapegui, Phys. Rev. E 74, 022102 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  24. P. Jung, P. Hänggi, Europhys. Lett. 8, 505 (1989)

    Article  ADS  Google Scholar 

  25. L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Rev. Mod. Phys. 70, 223 (1998)

    Article  ADS  Google Scholar 

  26. J.H. Yang, M.A.F. Sanjuán, H.G. Liu, G. Litak, X. Li, Commun. Nonlinear Sci. Numer. Simul. 41, 104 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  27. J.H. Yang, M.A.F. Sanjuán, H.G. Liu, H. Zhu, Nonlinear Dyn. 87, 1721 (2017)

    Article  Google Scholar 

  28. J. Zhang, W. Hu, Y. Ma, Pramana 87, 93 (2016)

    Article  ADS  Google Scholar 

  29. I.S. Jesus, J.A.T. Machado, Commun. Nonlinear Sci. Numer. Simul. 14, 1838 (2009)

    Article  ADS  Google Scholar 

  30. J.A.T. Machado, I.S. Jesus, A. Galhano, J.B. Cunha, Signal Process. 86, 2637 (2006)

    Article  Google Scholar 

  31. H. Li, X. Liao, S. Ullah, L. Xiao, Nonlinear Anal. Real 13, 2724 (2012)

    Article  Google Scholar 

  32. C.K. Kwuimy, B.N. Nbendjo, Phys. Lett. A 375, 3442 (2011)

    Article  ADS  Google Scholar 

  33. C.K. Kwuimy, G. Litak, C. Nataraj, Nonlinear Dyn. 80, 491 (2015)

    Article  Google Scholar 

  34. I. Kovacic, Z. Rakaric, L. Cveticanin, Appl. Math. Comput. 217, 3944 (2010)

    MathSciNet  Google Scholar 

  35. L. Cveticanin, J. Sound Vib. 320, 1064 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Sanjuán, M.A.F., Chen, P. et al. Stochastic resonance in overdamped systems with fractional power nonlinearity. Eur. Phys. J. Plus 132, 432 (2017). https://doi.org/10.1140/epjp/i2017-11701-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11701-8

Navigation