Skip to main content
Log in

Study of charged particle production in U-U collisions in the wounded quark model

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Recently, there has been a growing interest in the study of deformed uranium-uranium (U-U) collisions in its various geometrical configurations due to their usefulness in understanding the different aspects of quantum chromodynamics (QCD). In this paper we have studied the particle production in deformed U-U collisions at \( \sqrt{s_{NN}} = 193\) GeV using the modified wounded quark model (WQM). At first, we have shown the variation of quark-nucleus inelastic scattering cross-section ( \( \sigma_{qA}^{in}\) with respect to centralities for various geometrical orientations of U-U collisions in WQM. After that we have calculated the pseudorapidity density ( \( {\rm d}n_{ch}/{\rm d} \eta\) within WQM using a two-component prescription. Further we have calculated the transverse energy density distribution ( \( {\rm d}E_{T}/{\rm d} \eta\) along with the ratio of transverse energy to charged hadron multiplicity ( \( E_{T}/N_{ch}\) for U-U collisions and compared them with the corresponding experimental data. We have shown the scaling behavior of \( {\rm d}n_{ch}/{\rm d} \eta\) and \( {\rm d}E_{T}/{\rm d} \eta\) for different initial geometry of U-U collision with respect to p -p data at \( \sqrt{s_{NN}}= 200\) GeV. Furthermore we have shown the Bjorken energy density achieved in U-U collisions for various configurations and compared them with experimental data of Au-Au at 200GeV. We observe that the present model suitably describes the experimental data for minimum bias geometrical configuration of U-U collisions. An estimate for various observables in different initial geometries of U-U collisions is also presented which will be tested in future by experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.P. Singh, Int. J. Mod. Phys. A 7, 7185 (1992)

    Article  ADS  Google Scholar 

  2. C.P. Singh, Phys. Rep. 236, 147 (1993)

    Article  ADS  Google Scholar 

  3. I.M. Dremin, J.W. Gary, Phys. Rep. 349, 301 (2001)

    Article  ADS  Google Scholar 

  4. P.K. Srivastava, S.K. Tiwari, C.P. Singh, Phys. Rev. D 82, 014023 (2010)

    Article  ADS  Google Scholar 

  5. Y. Hirono, M. Hongo, T. Hirano, Phys. Rev. C 72, 021903(R) (2014)

    Article  ADS  Google Scholar 

  6. U. Heinz, A. Kuhlman, Phys. Rev. Lett. 94, 132301 (2005)

    Article  ADS  Google Scholar 

  7. A. Kuhlman, U. Heinz, Phys. Rev. C 72, 037901 (2005)

    Article  ADS  Google Scholar 

  8. J.P. Bondorf, H.T. Feldmeier, S. Garpman, E.C. Halbert, Phys. Lett. B 65, 3 (1976)

    Article  Google Scholar 

  9. H. Masui, B. Mohanty, Nu Xu, Phys. Lett. B 679, 440 (2009)

    Article  ADS  Google Scholar 

  10. Q.Y. Shou, Y.G. Ma, P. Sorensen, A.H. Tang, F. Videbk, H. Wang, Phys. Lett. B 749, 215 (2015)

    Article  ADS  Google Scholar 

  11. S.A. Voloshin, Phys. Rev. Lett. 105, 172301 (2010)

    Article  ADS  Google Scholar 

  12. J. Bloczynski, Xu-G. Huang, X. Zhang, J. Liao, arXiv:nucl-th/1311.5451

  13. B. Schenke, P. Tribedy, R. Venugopalan, arXiv:nucl-th/1403.2232

  14. Z.G. Xiao, X. Dong, F. Liu, X.F. Luo, K.J. Wu, H.S. Xu, N. Xu, W.L. Zhan, J. Phys. G Nucl. Part. Phys. 34, S915 (2007)

    Article  ADS  Google Scholar 

  15. E.V. Shuryak, arXiv:nucl-th/9906062

  16. D. Kikoa, G. Odyniec, R. Vogt, Phys. Rev. C 84, 054907 (2011)

    Article  ADS  Google Scholar 

  17. P.F. Kolb, J. Sollfrank, U. Heinz, Phys. Rev. C 62, 054909 (2000)

    Article  ADS  Google Scholar 

  18. P.F. Kolb, J. Sollfrank, U. Heinz, Phys. Lett. B 459, 667 (1999)

    Article  ADS  Google Scholar 

  19. B.-A. Li, Phys. Rev. C 61, 021903(R) (2000)

    Article  ADS  Google Scholar 

  20. P.F. Kolb, J. Sollfrank, P.V. Ruuskanen, U. Heinz, Nucl. Phys. A 661, 349c (1999)

    Article  ADS  Google Scholar 

  21. STAR Collaboration (H. Wang, P. Sorensen), arXiv:nucl-ex/1406:7522

  22. W. Ke-Jun, X. Fei, Z. You, L. Feng, X. Nu, Chin. Phys. Lett. 25, 3204 (2008)

    Article  ADS  Google Scholar 

  23. T. Hirano, P. Huovinen, Y. Nara, Phys. Rev. C 83, 021902(R) (2011)

    Article  ADS  Google Scholar 

  24. M.R. Haque, Z.-W. Lin, B. Mohanty, Phys. Rev. C 85, 034905 (2012)

    Article  ADS  Google Scholar 

  25. J. Xu, Z. Martinot, B.-A. Li, Phys. Rev. C 86, 044623 (2012)

    Article  ADS  Google Scholar 

  26. M. Rybczynski, W. Broniowski, G. Stefanek, Phys. Rev. C 87, 044908 (2013)

    Article  ADS  Google Scholar 

  27. B. Schenke, P. Tribedy, R. Venugopalan, Phys. Rev. C 89, 064908 (2014)

    Article  ADS  Google Scholar 

  28. S. Chatterjee, P. Tribedy, Phys. Rev. C 92, 011902(R) (2015)

    Article  ADS  Google Scholar 

  29. A. Goldschmidt, Z. Qiu, C. Shen, U. Heinz, Phys. Rev. C 92, 044903 (2015)

    Article  ADS  Google Scholar 

  30. P. Bozek, W. Broniowski, M. Rybczynski, Phys. Rev. C 94, 014902 (2016)

    Article  ADS  Google Scholar 

  31. A. Drees, arXiv:physics.acc-ph/1312.6618

  32. J. Hoelck, F. Nendzig, G. Wolschin, arXiv:hep-ph/1602.00019

  33. H. Heiselberg, A.-M. Levy, Phys. Rev. C 59, 5 (1999)

    Article  Google Scholar 

  34. C. Nepali, G. Fai, D. Keane, Phys. Rev. C 76, 051902(R) (2007)

    Article  ADS  Google Scholar 

  35. P. Filip, R. Lednicky, H. Masui, N. Xu, Phys. Rev. C 80, 054903 (2009)

    Article  ADS  Google Scholar 

  36. P. Moller, J.R. Nix, W.D. Myers, W.J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995)

    Article  ADS  Google Scholar 

  37. K. Hagino, N.W. Lwin, M. Yamagami, Phys. Rev. C 74, 017310 (2006)

    Article  ADS  Google Scholar 

  38. A. Kumar, P.K. Srivastava, B.K. Singh, C.P. Singh, Adv. High Energy Phys. 2013, 352180 (2013)

    Article  Google Scholar 

  39. A. Kumar, B.K. Singh, P.K. Srivastava, C.P. Singh, Eur. Phys. J. Plus 128, 45 (2013)

    Article  Google Scholar 

  40. O.S.K. Chaturvedi, P.K. Srivastava, A. Kumar, B.K. Singh, Eur. Phys. J. Plus 131, 438 (2016)

    Article  Google Scholar 

  41. C.P. Singh, M. Shyam, S.K. Tuli, Phys. Rev. C 40, 1716 (1989)

    Article  ADS  Google Scholar 

  42. M. Shyam, C.P. Singh, S.K. Tuli, Phys. Lett. B 164, 189 (1985)

    Article  ADS  Google Scholar 

  43. C.P. Singh, M. Shyam, Phys. Lett. B 171, 125 (1986)

    Article  ADS  Google Scholar 

  44. A. Bialas, W. Czyz, L. Lesniak, Phys. Rev. D 25, 9 (1992)

    Google Scholar 

  45. V.V. Anisovich, M.N. Kobrinskii, J. Nyiri, Yu.M. Shabelskii, Sov. Phys. Usp. 27, 12 (1984)

    Article  Google Scholar 

  46. H.J. Lipkin, Phys. Lett. B 116, 175 (1982)

    Article  ADS  Google Scholar 

  47. ALICE Collaboration (J. Adam), arXiv:nucl-ex/1509.07541

  48. S. Nussinov, Phys. Rev. Lett. 34, 1286 (1975)

    Article  ADS  Google Scholar 

  49. F.E. Low, Phys. Rev. D 12, 163 (1980)

    Article  ADS  Google Scholar 

  50. T. Alexopoulos et al., Phys. Lett. B 435, 453 (1998)

    Article  ADS  Google Scholar 

  51. W.D. Walker, Phys. Rev. D 69, 034007 (2004)

    Article  ADS  Google Scholar 

  52. C. Loizides, J. Nagle, P. Steinberg, arXiv:nucl-ex/1408.2549

  53. S. Fernbach, R. Serber, T.B. Taylor, Phys. Rev. 75, 1352 (1949)

    Article  ADS  Google Scholar 

  54. T.F. Hoang, B. Cork, H.J. Crawford, Z. Phys. C 29, 611 (1985)

    Article  ADS  Google Scholar 

  55. Thomas A. Trainer, Phys. Rev. C 80, 044901 (2009)

    Article  ADS  Google Scholar 

  56. Thomas A. Trainor, David T. Kettler, Phys. Rev. C 83, 034903 (2011)

    Article  ADS  Google Scholar 

  57. STAR Collaboration (L. Adamczyk et al.), Phys. Rev. Lett. 115, 222301 (2015)

    Article  ADS  Google Scholar 

  58. S. Chatterjee, S.K. Singh, S. Ghosh, Md Hasanujjaman, J. Alam, S. Sarkar, Phys. Lett. B 758, 269 (2016)

    Article  ADS  Google Scholar 

  59. J.S. Moreland, J.E. Bernhard, S.A. Bass, Phys. Rev. C 92, 011901 (2015)

    Article  ADS  Google Scholar 

  60. J.D. Bjorken, Phys. Rev. D 27, 140 (1983)

    Article  ADS  Google Scholar 

  61. PHENIX Collaboration (A. Adare et al.), Phys. Rev. C 93, 024901 (2016)

    Article  ADS  Google Scholar 

  62. S.K. Tiwari, R. Sahoo, arXiv:hep-ph/1701.03323

  63. S.K. Tiwari, P.K. Srivastava, C.P. Singh, Phys. Rev. C 85, 014908 (2012)

    Article  ADS  Google Scholar 

  64. Arpit Singh, P.K. Srivastava, O.S.K. Chaturvedi, S. Ahmad, B.K. Singh, arXiv:nucl-th/1707.07552

  65. R. Nouicer et al., J. Phys. G 30, S1133 (2004)

    Article  ADS  Google Scholar 

  66. PHOBOS Collaboration (B. Alver et al.), Phys. Rev. C 80, 011901(R) (2009)

    Article  Google Scholar 

  67. PHOBOS Collaboration (B.B. Back et al.), Phys. Rev. C 74, 021901(R) (2006)

    Article  Google Scholar 

  68. V. Bairathi, Md.R. Haque, B. Mohanty, Phys. Rev. C 91, 054903 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Srivastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaturvedi, O.S.K., Srivastava, P.K., Kumar, A. et al. Study of charged particle production in U-U collisions in the wounded quark model. Eur. Phys. J. Plus 132, 430 (2017). https://doi.org/10.1140/epjp/i2017-11683-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11683-5

Navigation