Skip to main content
Log in

A variational numerical method based on finite elements for the nonlinear solution characteristics of the periodically forced Chen system

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Nonlinear dynamical systems and their solutions are very sensitive to initial conditions and therefore need to be approximated carefully. In this article, we present and analyze nonlinear solution characteristics of the periodically forced Chen system with the application of a variational method based on the concept of finite time-elements. Our approach is based on the discretization of physical time space into finite elements where each time-element is mapped to a natural time space. The solution of the system is then determined in natural time space using a set of suitable basis functions. The numerical algorithm is presented and implemented to compute and analyze nonlinear behavior at different time-step sizes. The obtained results show an excellent agreement with the classical RK-4 and RK-5 methods. The accuracy and convergence of the method is shown by comparing numerically computed results with the exact solution for a test problem. The presented method has shown a great potential in dealing with the solutions of nonlinear dynamical systems and thus can be utilized in delineating different features and characteristics of their solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Gitterman, G.H. Weiss, J. Stat. Phys. 71, 1213 (1993)

    Article  ADS  Google Scholar 

  2. N. Jabli, H. Khammari, M.F. Mimouni, Int. J. Comput. Sci. 7, 3 (2010)

    Google Scholar 

  3. J. Zhang, M. Fan, M. Bohner, Int. J. Differ. Equ. 6, 59 (2011)

    Google Scholar 

  4. J. Lu, C. Chen, S. Zhang, Int. J. Bifurcat. Chaos 12, 1001 (2002)

    Article  Google Scholar 

  5. D. Huang, Prog. Theor. Phys. 112, 785 (2004)

    Article  ADS  Google Scholar 

  6. K.H. Sun, X. Liu, C.X. Zhu, J.C. Sprott, Nonlinear Dyn. 69, 1383 (2012)

    Article  Google Scholar 

  7. M. Agarwal, A. Prasad, R. Ramaswamy, Phys. Rev. E 81, 026202 (2010)

    Article  ADS  Google Scholar 

  8. C.M. Amanda, Chin. Phys. Lett. 30, 030502 (2013)

    Article  ADS  Google Scholar 

  9. S. Tang, L. Chen, Int. J. Bifurcat. Chaos 13, 973 (2003)

    Article  Google Scholar 

  10. S. Keh-Dong, F. Kandeel, J. Biomed. Res. 24, 347 (2010)

    Article  Google Scholar 

  11. J. Yang, S. Tang, R.A. Cheke, Commun. Nonlinear Sci. Numer. Simul. 22, 478 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  12. F.T. Arecchi, R. Meucci, B. Puccioni, T. Tredicce, Phys. Rev. Lett. 49, 1217 (1982)

    Article  ADS  Google Scholar 

  13. D.J. Nefske, S.H. Sung, J. Vib. Acoust. Stress Reliab. Des. 111, 94 (1989)

    Article  Google Scholar 

  14. C. Myung-Soo, KSME Int. J. 17, 805 (2003)

    Article  Google Scholar 

  15. W. Xiao-Feng, J. Vib. Acoust. Stress Reliab. Des. 111, 101 (1989)

    Article  Google Scholar 

  16. Y.C. Han, S.T. Wang, in Proceedings of the 14th World Conference on Earthquake Engineering, Beijing, China, 12-17 October 2008 (The Institute of Theoretical and Applied Mechanics, 2008)

  17. M. Jameel et al., Latin Am. J. Solids Struct. 10, 921 (2013)

    Article  Google Scholar 

  18. A. Ali, PhD Thesis, The University of Oklahoma, (1999)

  19. M.A.V. Krishna, A. Raman, J. Sound Vib. 4, 559 (1980)

    Article  ADS  Google Scholar 

  20. Y. Liu, J.D. Andrew, J. Comput. Nonlinear Dyn. 11, 011003 (2016)

    Article  Google Scholar 

  21. R.N. Bernd, S. Michael, M. Marek, T. Gilead, CISM Courses Lect. 528, 111 (2011)

    Google Scholar 

  22. A. Andrew, E.M.P. Charles, A. Derek, PLoS ONE 9, e77190 (2014)

    Article  ADS  Google Scholar 

  23. S. Krishnamoorthi et al., PLoS ONE 9, e114494 (2014)

    Article  ADS  Google Scholar 

  24. C.A.J. Fletcher, Computational Galerkin Methods (Springer-Verlag, 2006)

  25. L. Cornelius, The Variational Principles of Mechanics, 4nd edition (University of Toronto Press, 1970)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabeel M. Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, S.M., Sunny, D.A. & Aqeel, M. A variational numerical method based on finite elements for the nonlinear solution characteristics of the periodically forced Chen system. Eur. Phys. J. Plus 132, 395 (2017). https://doi.org/10.1140/epjp/i2017-11673-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11673-7

Navigation