Skip to main content
Log in

Fabrication of active and passive controls of nanoparticles of unsteady nanofluid flow from a spinning body using HPM

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

A study exploring the flow features of unsteady nanofluid flow near the stagnation point of a spinning sphere along with the mechanism of active-passive controls of nanoparticles is brought forward. Brownian motion and the thermophoretic phenomenon have been integrated to modify the conventional energy and concentration profile. Leading equations have been normalised via similarity conversion and then cracked numerically using both the homotopy perturbation procedure and the classical RK-4 shooting procedure. Influence of the flow related factors on the flow regime has been analyzed via tables and graphs. Favourable comparison has been made and it shows excellent accord. Results show that the mass transfer rate increases for passively controlled flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.U.S. Choi, Dev. Appl. Non-Newton Flows 66, 99 (1995)

    Google Scholar 

  2. R. Taylor, S. Coulombe, T. Otanicar, J. Appl. Phys. 113, 011301 (2013)

    Article  ADS  Google Scholar 

  3. D.P. Kulkarni, D.K. Das, R.S. Vajjha, Appl. Energy 86, 2566 (2009)

    Article  Google Scholar 

  4. S. Sarkar, S. Ganguly, Microfluid. Nanofluid. 18, 623 (2015)

    Article  Google Scholar 

  5. A.H. Battez, R. Gonzalez, J.L. Viesca, Wear 265, 422 (2008)

    Article  Google Scholar 

  6. S.K. Nandy, I. Pop, Int. Commun. Heat Mass Transf. 53, 50 (2014)

    Article  Google Scholar 

  7. M.J. Uddin, W.A. Khan, N.S. Amin, PLoS ONE 9, e99384 (2014)

    Article  Google Scholar 

  8. M. Sheikholeslami, D.D. Ganji, M.M. Rashidi, J. Magn. & Magn. Mater. 416, 164 (2016)

    Article  ADS  Google Scholar 

  9. N. Acharya, K. Das, P.K. Kundu, Eur. Phys. J. Plus 131, 303 (2016)

    Article  Google Scholar 

  10. O.D. Makinde, F. Mabood, W.A. Khan, M.S. Tshehla, J. Mol. Liq. 219, 624 (2016)

    Article  Google Scholar 

  11. K. Das, N. Acharya, P.K. Kundu, Appl. Therm. Eng. 103, 38 (2016)

    Article  Google Scholar 

  12. N.S. Akbar, Z.H. Khan, S. Nadeem, J. Mol. Liq. 196, 21 (2014)

    Article  Google Scholar 

  13. N. Acharya, K. Das, P.K. Kundu, Alex. Eng. J. 55, 1177 (2016)

    Article  Google Scholar 

  14. K. Das, N. Acharya, P.K. Kundu, Acta Tech. 62, 041 (2017)

    Google Scholar 

  15. I.S. Oyelakin, S. Mondal, P. Sibanda, J. Nanofluid. 6, 273 (2017)

    Article  Google Scholar 

  16. N.S. Akbar, Z.H. Khan, S. Nadeem, J. Mol. Liq. 196, 21 (2014)

    Article  Google Scholar 

  17. J. Buongiorno, ASME J. Heat. Transf. 128, 240 (2006)

    Article  Google Scholar 

  18. C.Y. Cheng, D.T. Chin, Chem. Eng. Commun. 36, 17 (1985)

    Article  Google Scholar 

  19. N.S. Berman, M.A. Pasch, J. Rheol. 30, 441 (1986)

    Article  ADS  Google Scholar 

  20. M.S. Faltas, E.I. Saad, ZAMP 63, 905 (2012)

    ADS  Google Scholar 

  21. H.I. Andersson, M. Rousselet, Int. J. Heat Fluid Flow 27, 329 (2006)

    Article  Google Scholar 

  22. D. Anilkumar, S. Roy, Heat Mass Transf. 40, 487 (2004)

    Article  ADS  Google Scholar 

  23. S.V. Subhashini, H.S. Takhar, G. Nath, Heat Mass Transf. 43, 1133 (2007)

    Article  ADS  Google Scholar 

  24. A. Malvandi, Therm. Sci. 19, 1603 (2015)

    Article  Google Scholar 

  25. D.A. Nield, A.V. Kuznetsov, Int. J. Heat Mass Transfer 52, 5792 (2009)

    Article  Google Scholar 

  26. A.V. Kuznetsov, D.A. Nield, Int. J. Heat Mass Transfer 65, 682 (2013)

    Article  Google Scholar 

  27. D.A. Nield, A.V. Kuznetsov, Int. J. Heat Mass Transfer 68, 211 (2014)

    Article  Google Scholar 

  28. A.V. Kuznetsov, D.A. Nield, Int. J. Heat Mass Transfer 77, 126 (2014)

    Google Scholar 

  29. N.A. Halim, S. Sivasankaran, N.F.M. Noor, Neural Comput. Appl. (2016) DOI:10.1007/s00521-016-2380-y

  30. N.A. Halim, R.U. Haq, N.F.M. Noor, Meccanica 52, 1527 (2017)

    Article  MathSciNet  Google Scholar 

  31. M. Atlas, R.U. Haq, T. Mekkaoui, J. Mol. Liq. 223, 289 (2016)

    Article  Google Scholar 

  32. S.S. Giri, K. Das, P.K. Kundu, Eur. Phys. J. Plus 132, 101 (2017)

    Article  Google Scholar 

  33. J.H. He, Appl. Math. Comput. 135, 73 (2003)

    MathSciNet  Google Scholar 

  34. J.H. He, Phys. Lett. A 350, 87 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  35. G.S. McNab, A. Meisen, J. Colloid Interface Sci. 44, 339 (1973)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilankush Acharya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acharya, N., Das, K. & Kumar Kundu, P. Fabrication of active and passive controls of nanoparticles of unsteady nanofluid flow from a spinning body using HPM. Eur. Phys. J. Plus 132, 323 (2017). https://doi.org/10.1140/epjp/i2017-11629-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11629-y

Navigation