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Abstract. Dry unit weight (γd) of soils is usually determined by in situ tests, such as rubber balloon,
sand cone, nuclear density measurements, etc. The elastic wave method using compressional wave has
been broadly used to determine various geotechnical parameters. In the present paper, the polynomial
neural network (NN) is used to estimate the γd of compacted soils indirectly depending on P -wave velocity
(Vp), moisture content (ω) and plasticity index (PI) as well as fine-grained particles (FC). Eight natural
soil samples (88 data) were applied for developing a polynomial representation of model. To determine the
performance of the proposed model, a comparison was carried out between the predicted and experimentally
measured values. The results show that the developed GMDH-type NN has a great ability (R2 = 0.942) to
predict the γd of the compacted soils and is more efficient (53% to 73% improvement) than the previous
reported methods. Finally, the derived model sensitivity analysis has been performed to evaluate the effect
of each input variable on the proposed model output and shows that the P -wave velocity is the most
influential parameter on the predicted γd.

List of symbols

Er Scaled relative error R2 Absolute fraction of variance

FC Fine-grained particles SCF Scaled cumulative frequency

LL Liquid limit (%) Vp P -wave velocity

M Total numbers of data sets X Input variable

MAD Mean absolute deviation y Actual output

MAPE Mean absolute percent error ω Moisture content (%)

MARE Mean absolute relative error ωopt Optimum moisture content

mi Input parameter γd Dry unit weight

mj output parameter γd max Maximum dry unit weight

PI Plastic index (%) γdmi Actual measured dry unit weight

PL Plastic limit γdpi Predicted dry unit weight

RMSE Root mean square error γdm Mean of the actual dry unit weight

1 Introduction

The mechanical improvement of soil through the compaction using mechanical energy is a cost effective stabilization
technique. During the course of a proper compaction process, as the strength of the soil increases, settlement potential,
hydraulic conductivity and void ratio decrease [1].
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The compaction parameters of soil are determined using the standard Proctor test [2]. In laboratory, the maximum
dry unit weight (γd max -lab) and the corresponding optimum moisture content (ωopt) are determined by plotting
a graph of dry unit weight (γd) against moisture contents (ω) according to ASTM D698 [3]. Soil is compacted in the
field according to the compaction parameters (γd max -lab and ωopt). In most specifications for earthwork, the contractor
is instructed to achieve a compacted field dry unit weight (γd-field) range of 95–98 percent of the γd max -lab. This is
characteristic of relative compaction (R), which can be expressed as [4]

R(%) =
γd-field

γd max -lab
× 100. (1)

The measuring γd-field of earth fill for construction of engineering earthwork for roads, embankments, earth dams,
retaining walls, soil liners, etc., is a major challenge in geotechnical engineering. There are a number of test methods
to determine the γd-field of the compacted earth fill, such as nuclear density measurement, sand cone, rubber balloon,
seismic velocity, and plate loading tests, but the most preferred methods are the nuclear and sand cone tests. Although
the nuclear density method is more practical and faster, more dependable results are obtained by destructive and time-
consuming methods, such as the sand cone and balloon methods. During the course of the sand cone test, vibrations
in the vicinity of the test area and moisture content of material largely affect the results. The measurements obtained
from nuclear densitometers are significantly affected by the grain size distribution and extreme care must be displayed
during the application in the site because of radioactivity [5].

The moisture content (ω) has a significant impact on the γd of compacted soil. When water is added to the soil
through compaction, it performs as a softening agent on the soil particles. The soil particles slip over each other and
move into a densely packed situation. The γd, after the compaction, first enhances as the ω increases. However, beyond
the ωopt (corresponding γd max), any increase in the ω tends to reduce the γd [5].

Besides ω, other important factor that affect the compaction is the soil type [5]. The soil compaction process
has important differences for cohesionless against cohesive soils. The shapes and the positions of the compaction
curves change as the texture of the soils varies from coarse to fine [6]. The main difference is that the cohesive soils
are naturally highly dependent on water and cohesionless soils are not [7]. Problems in the compaction of clays are
strongly related to their state of consistency index (liquid limit (LL), plastic limit (PL) and natural ω) [8]. Several
researchers have illustrated methods to estimate the compaction parameters of soils using index properties [9–15].
Jesmani et al. [16] investigated the effect of clay content on the compaction parameters.

The compressional wave velocity (Vp) is one of the parameters used to predict the mechanical, dynamic and physical
characteristics of soils and rocks [17–25].

Measuring the Vp using ultrasonic testing is a simple and fast approach to determine specifications of compacted
soils. Ultrasonic waves propagation in a material depends on the properties and condition of the substance. Wave
travel times through the fastest possible paths in soil masses are measured using these tests [26]. ASTM D2845 [27]
standard provides guidelines for the preparation of the specimen’s surfaces, where the transducers are placed. Several
researchers applied Vp by using ultrasonic testing to describe physical properties of soils, e.g., density, plasticity, clay
content, Atterberg limits and porosity [28–35].

Due to the disadvantages of general methods to determine γd in the field, indirect assessment of the γd of compacted
soils from other geotechnical tests carried out more simply can be used. Kolay and Baser [36] used the general linear
model (GLM) to model the γd of the compacted soils using Vp and ω in laboratory conditions and proposed the
following equation:

γd = 23 − 0.005Vp − 0.27ω + 0.0001Vp · ω. (2)

The equation is developed based on statistical analysis with notable modeling drawbacks. Such models are not efficiently
able to consider the complex interactions between the soil parameters and γd. Therefore, more complicated methods
are necessary to consider the complex behavior of γd.

Computational intelligence (CI) methods, such as support vector machines (SVM), artificial neural network (ANN),
adaptive neuro-fuzzy system (ANFIS), fuzzy inference system (FIS), etc., can be considered as efficient techniques.
CI methods have been used in many geotechnical engineering problems for modeling complex correlations between
input and output parameters [37–48]. Najjar et al. [49], Sinha and Wang [50], Günaydın [51] and Sinivasulu et al. [52]
proposed models based on ANN to predict the compaction parameters of soils. Kolay and Baser [36] used the multi-
layer perceptron (MLP) neural network (NN) to model the γd of the compacted soils using Vp and ω in laboratory
conditions. The basic disadvantage that limits the practicability of SVM, ANN, ANFIS, FIS models is that they are
black-box models and have not the ability to generate practicable equations [53].

In recent years, self-organizing kinds of NN are used in a wide range of applications. One of such NN models is the
group method of data handling (GMDH). The purpose of this method, which was first developed by Ivakhnenko [54],
is to identify the functional structure of a model hidden in the experimental data. The GMDH polynomial NN model
has the capability to choose the most important input parameters that affect the model and results in a regression
relation relating the input parameters to the output ones [55]. By GMDH polynomial NN complex models can be
gradually produced based, on an assessment of their behavior, on a set of multi-input single-output data pairs (Xi, yi)
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Table 1. Soils physical properties [36]. NP : Non-plastic. CH: Fat clay. CL: Lean clay. SM : Silty sand. SC: Clayey sand.

Symbol Soil type FC (%) Gs LL (%) PL (%) PI (%)

F1 CH 75.80 2.70 56.90 30.75 26.15

F2 CH 71.93 2.44 61.60 29.05 32.55

F3 CL 67.61 2.63 42.35 25.36 16.99

F4 CL 60.67 2.54 49.50 32.51 16.99

C1 SM 19.82 2.59 NP NP NP

C2 SM 24.70 2.59 30.80 24.30 6.5

C3 SC 43.72 2.63 42.35 25.36 16.99

C4 SC 40.06 2.51 30.00 16.65 13.35

Table 2. Detailed information of parameters. σ: Standard deviation. CV : Coefficient of variation.

Parameter Minimum Mean Maximum σ CV

ω (%) 3.61 16.05 36.85 7.43 0.46

Vp (m
s
) 105.31 575.00 960.45 235.38 0.41

FC (%) 19.82 50.65 75.80 20.18 0.40

PI (%) 0 16.19 32.55 9.57 0.59

γd (KN
m3 ) 13.22 17.10 21.58 2.04 0.12

(i = 1, 2, . . .,M). With this polynomial algorithm, a model can be described as a set of neurons in which various
pairs connected in every layer through a quadratic polynomial, and hence new neurons in the subsequent layer, are
produced. With this algorithm, a model can be described as a set of neurons in which different pairs connected in
each layer may be provided. Such representation can be used to map inputs to outputs [56]. The major advantage
of GMDH is that the analytical equations can be easily analyzed and interpreted by users. Furthermore, in GMDH,
highly short and noisy data can be efficiently handled [55].

Nowadays, genetic algorithms optimizations have been applied in the GMDH NN. In recent years, the genetic
algorithms optimized GMDH has been utilized in geotechnical engineering problems and has shown some improve-
ment [57–63].

The purpose of present study is the development of a GMDH polynomial NN to predict the γd of compacted soils.
As previously mentioned, ω and soil type have a strong influence on γd. Also, Vp has been widely used to predict soil
parameters. In the present article, it is assumed that the γd of the soils is influenced by moisture content (ω), P -wave
velocity (Vp) and plasticity index (PI) as well as fine-grained particles (FC). ω and Vp are the characteristics of the
soil state, while the PI and FC are the characteristics of the soil nature or type.

2 Database compilations

This study analyzes eight natural soil samples (four types) using an already published data set taken from different
locations in the province of Yozgat, Turkey [36]. Soils used in the study were classified according to the unified soil
classification system (USCS) by consistency limits (LL, PL) [64] and sieve analysis results [65]. The samples were
sieved using a #4 mesh size before the standard Proctor test. Physical properties of soil samples are given in table 1.
Standard Proctor tests were performed with eleven different moisture contents (ω) for each soil sample. The tests
were numbered according to increasing ω. Eleven distinct points for each soil sample were obtained on the compaction
curve. Afterward, ω, Vp and γd were measured for all the test points during standard Proctor tests (8×11 = 88 tests).
An ultrasonic test device was used to measure Vp of the compacted soil and in accordance with the direct method [27].
The Vp was calculated dividing the length of the soil by transit time. In the database, the γd of compacted soils were
supposed to be affected by plasticity index (PI) and fine-grained particles (FC) in addition to P -wave velocity (Vp)
and moisture content (ω) as summarized in table 2.
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Fig. 1. Comparison between the measured and predicted γd using empirical formulas.

Table 3. Suggested empirical equations and statistical results.

Equation Reference R2 RMSE MARE

γd = 23 − 0.005Vp − 0.27ω + 0.0001Vp · ω Kolay and Baser [39] 0.44 1.52 7.09

γd = 20.89 − 0.002ω + 0.0009Vp − 0.07FC − 0.05PI This study 0.78 0.95 4.70

3 Regression analysis

Kolay and Baser [39] used Vp and ω to predict γd by the GLM method (eq. (2)). Vp and ω describe the soil condition
or compaction in the field. The γd can be affected by other soil parameters such as PI [13–15] and FC [16], for these
two parameters are representative of the type or nature of soils. Thus, In this article multiple regression analysis was
performed to predict γd as a function of ω, Vp, FC and PI. The derived equation is as follows:

γd = 20.89 − 0.002 ω + 0.0009Vp − 0.07 FC − 0.05 PI. (3)

The comparison between the predicted (using eqs. (2) and (3)) and measured (from Proctor test) γd is shown in fig. 1.
In table 3 the predictabilities of the proposed equation and GLM for all data set are given.

To determine the performance of the equations, absolute fraction of variance (R2), root mean squared error
(RMSE) and mean absolute relative error (MARE) were used as follows:

R2 = 1 −
[∑M

1 (γdmi − γdpi)2∑M
1 (γdmi−γdm)2

]
(4)

RMSE =

√√√√ 1
M

M∑
1

(γdmi − γdpi)2 (5)

MARE =
1
M

.
M∑
1

∣∣∣∣γdmi − γdpi

γdmi

∣∣∣∣ × 100, (6)

where M is the total number of data, the γdmi and γdpi are the measured and predicted γd at the i-th test number.
As seen from fig. 1 and table 3, although the suggested equation is simpler, it has better performance than the

GLM method. This is for appearing PI and FC those characterize the soil type in eq. (3).
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Table 4. Detailed information of parameters used in the model.

Parameter
Train (72 data sets) Test (16 data sets)

minimum mean maximum minimum mean maximum

ω (%) 3.61 16.35 36.85 4.31 17.22 32.90

Input
Vp

`

m
s

´

105.31 583.79 960.45 126.90 535.47 942.62

FC (%) 19.82 50.54 75.80 19.82 50.54 75.80

PI (%) 0 2.64 32.55 0 2.64 32.55

Output γd

`

KN
m3

´

13.22 17.16 21.58 13.39 16.85 20.70

4 Evaluation of dry unit weight using GMDH polynomial NN

The advantage of the ANNs is that they are very useful in learning complex relationships between multi-dimensional
data. Despite the good performance of ANNs, they are not capable of generating prediction equations. This is a
fundamental disadvantage that limits their practicability. In order to overcome this disadvantage, group method of
data handling (GMDH) type neural network (NN) has been used in this article. The GMDH-type NN is aimed at
identifying the functional structure of a model hidden in the empirical data. For inaccurate, noisy, or small data sets,
the GMDH is the best optimal simplified model, with a higher accuracy and a simpler structure than typical full
physical models [66].

The main goal of the present study is to derive a polynomial equation for estimating γd. For this purpose, the data
are divided randomly into two separate data sets including the training and testing data set. In this research, among
88 data sets, 16 randomly data sets (2 for each sample type) have been used to test and 72 data sets have been used
to train. Testing and training data are statistically similar (table 4).

Several parameters including number of generations, population size, number of hidden layers, mutation probability
and crossover probability involved in GMDH predictive. The selection of these parameters will influence the model
generalization ability of polynomial NN. In this study, a population of 100 individuals with a mutation probability of
0.01 and crossover probability of 0.90 is used in 300 generations for the population size of which no further improvement
is achieved. Although the triple hidden layer behavior has shown a little better, however, in order to avoid over-
fitting and obtaining simpler equations, it was decided to choose double hidden layer. The flowchart of the proposed
polynomial method is shown in fig. 2.

For evaluating γd by GMDH models, various combinations of input parameters (for all data sets) were trained to
determine a proper combination of them (table 5). The fundamental methodology used involves removing parameters
of the input layer and then do the same analysis again [67].

As seen in table 5, the model with all parameters (ω, Vp, FC and PI) has the best performance in comparison
with other combinations of GMDH models. One concludes that all considered input parameters do influence the value
of γd. In the following, all four parameters will be used as input parameters to the GMDH modeling.

The evolved GMDH structure is shown in fig. 3. The polynomial equation corresponding to such model to predict
γd is as follows:

γd = 7.5 − 1.75Y2 + 1.803Y3 + 0.537Y 2
2 + 0.367Y 2

3 − 0.875Y2 · Y3 (7a)

Y3 = 0.075 + 0.0094Vp + 0.63Y1 − 0.0000012V 2
p + 0.0176Y 2

1 − 0.0004Vp · Y1 (7b)

Y2 = −64.657 + 1.951ω + 6.871Y1 − 0.0148ω2 − 0.134Y 2
1 − 0.086ω · Y1 (7c)

Y1 = 27.29 − 0.634FC + 0.972PI + 0.0114FC2 + 0.0342PI2 − 0.04FC · PI, (7d)

where FC is the fine-grained particles, PI the plasticity index, ω the moisture content, Vp the P -wave velocity and
γd the dry unit weight.

Figure 4 shows the scattergram for the estimated γd from the model and the measured γd from the Proctor test.
According to this figure, very good correlation for both the training and testing data is shown by the GMDH model.
The developed model predictability is statistically given in table 6. It is obvious that the proposed model can effectively
predict the testing output data that has not been trained.
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Fig. 2. The flowchart of the proposed method.

Table 5. GMDH models of various combinations of input variables.

Combination of input parameters R2 RMSE MARE

Vp + FC + PI 0.90 0.63 2.84

Vp + ω + PI 0.83 0.84 3.94

Vp + ω + FC 0.86 0.75 3.50

ω + FC + PI 0.89 0.66 3.25

Vp + ω + FC + PI 0.942 0.49 1.88

In table 7, the GMDH polynomial model predictability (for all data set) is statistically compared with the GLM
equations and MLP model. As Kolay and Baser [36] did not provide equation for the MLP method, its R2, RMSE
and MARE cannot be determined for all data set. Therefore, in table 7, R2, RMSE and MARE for the MLP method
are given in table 4 in Kolay and Baser [36]. It can be seen that the MLP method has a better performance than the
proposed equation in this study (eq. (3)) and the GLM method (eq. (1)). However, the best fit is obtained by the
GMDH method (53% to 73% improvement).

Graphs of the scaled relative error (Er) versus scaled cumulative frequency (SCF ) can be used to compare the
accuracy of the equations. Er is determined by the following equation:

Er(%) =
(γdpi − γdmi)

γdmi
× 100. (8)

As seen in fig. 5, wide ranges of prediction are given by GLM relationships in comparison to the proposed polynomial
model. The GMDH model is more accurate with respect to the other two methods.

Before compaction of soils in the site, PI, FC and ω are measured in laboratory. Thus, the in situ γd can be
accurately determined by measuring Vp of the compacted site and using eq. (7).
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Table 6. Performance indices of GMDH model to predict γd.

Model (stage) R2 RMSE MARE

GMDH (training) 0.938 0.50 1.87

GMDH (testing) 0.954 0.44 1.98

Table 7. Performance indices of different methods to predict γd.

Equation R2 RMSE MARE

γd = 23 − 0.005Vp − 0.27ω + 0.0001Vp · ω [36] 0.44 1.52 7.09

γd = 20.89 − 0.002ω + 0.0009Vp − 0.07FC − 0.05PI (This study) 0.78 0.95 4.70

γd, MLP model [36] ≈ 0.80 ≈ 0.87 ≈ 4.03

γd, GMDH model (This study) 0.942 0.49 1.89
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Table 8. Effect of each input variable on the model γd.

Input parameter ω Vp FC PI

Rij 0.875 0.914 0.884 0.805

5 Sensitivity analysis

As the evolved polynomial equation is complex, the sensitivity analysis has been performed to determine the influence
of each input parameter on the model output [62]. For this purpose, the cosine amplitude manner illustrated in the
following equation is used [68]:

Rij =
∑M

k=1 (mik × mjk)√∑M
k=1 m2

ik

∑M
k=1 m2

jk

, (9)

where M is the total number of data, mi the input parameter and mj the output parameter. The Rij range is 0–1 and
represents the strength of the relation between each input variable and the model output. Table 8 shows the achieved
strength of relations for the proposed model. As presented in this table, the P -wave velocity is the most important
parameter on the model γd.

Figure 6 shows the impact of changes in the input variables on the proposed model to predict γd. Various changes
at constant rate (−15% to 15%) have been selected. For each input variable changes, MARE changes in the model
output has been determined. As seen in fig. 6, the developed polynomial model is significantly influenced by varying
the FC value and the MARE increases seriously by changing it. For example, 15% error in determining FC in the
laboratory may lead to an error of about 12% (MARE ≈ 12) in predicting γd by the proposed model. In other words,
1.3% error in FC is equal to 15% error in Vp, which affects the predicted γd. Then it requires more accuracy to measure
FC in laboratory.

6 Conclusions

There are a number of test methods to determine the dry unit weight (γd) of the compacted soils, such as nuclear
density measurement, sand cone, rubber balloon, seismic velocity, and plate loading tests. Group method of data
handling (GMDH) polynomial is a self-organizing kind of neural network (NN) and can be applied for modeling
complex problems. For inaccurate, noisy, or small data sets, the GMDH is the best optimal simplified model, with a
higher accuracy and a simpler structure than typical full physical models. Due to the disadvantages of common methods
to determine γd in the site, the present study developed a GMDH polynomial NN to predict the γd of compacted soils
based on moisture content (ω), P -wave velocities (Vp) and fine-grained particles (FC) as well as plasticity index (PI).
A published database containing 88 data sets from Yozgat, Turkey [36], were used to model the GMDH. New equations
to predict γd are proposed using the regression technique and the GMDH model. Furthermore, in order to determine
the effect of each input variable on model γd, the sensitivity analysis of the polynomial model was carried out.
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The results indicate that:

– The suggested equation (eq. (3)) using the multiple regression analysis with four input parameters (ω, Vp, FC and
PI) has a better performance than the GLM model with two input parameters (ω and Vp). The improvement is
for appearing FC and PI those characterize the soil type.

– The MLP model proposed by Kolay and Baser [36] has a better performance than the proposed equations in this
study and the GLM model.

– The evolved GMDH model in the form of simple polynomial equations has been effectively applied to predict γd.

– The proposed GMDH model is more efficient (53% to 73% improvement) than the previous reported methods and
by using its corresponding equation, γd of the soils of this area (CH, CL, SC and SM) can be accurately predicted.

– The sensitivity analysis shows that the Vp of the compacted soil is the most important parameter on the model γd.
– The proposed polynomial model to predict γd is significantly affected by varying the FC and the mean absolute

relative error (MARE) increases greatly by changing it. So, to determine this parameter in laboratory requires
high accuracy.

– As PI, FC and ω of the soils are measured in laboratory before compacting in the site, the in situ γd can be
accurately determined by measuring Vp in compacted site and using the developed GMDH equation (eq. (7)).

It should be mentioned here that the proposed GMDH equation to predict γd obtained from limited type (CH, CL,
SM and SC) and number of soil samples within the range 13.39 ≤ γd ≤ 21.58. Then, more researches are necessary
to check the validity of the derived equation for other types of soils.
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