Skip to main content

Advertisement

Log in

Diffuse neutrino emissions from the Southern sky and Mediterranean neutrino telescopes

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Astrophysical high-energy neutrinos offer an extremely interesting window of observation on our Universe. Cosmic neutrinos are probes for extreme events happening nearby the most powerful astrophysical objects. Direct information on the behaviour of cosmic ray sources is provided by neutrinos: since they are weakly interacting neutral particles, barely changing their information load over cosmic distance, the detection of neutrinos from the interaction of primary cosmic rays close to their acceleration site could allow the identification of their sources and of their production and acceleration mechanisms. Compelling evidence for the existence of an astrophysical flux of neutrinos above some tens of TeV has been reported by the IceCube Collaboration. Some features of the energy and declination distributions of the IceCube signal hint at a North/South asymmetry of the measured neutrino flux, which could be related to the presence of the bulk of our Galaxy in the Southern hemisphere. The ANTARES neutrino telescope, operating in the Mediterranean Sea since 2007, offers the best sensitivity to muon neutrinos below 100TeV in this part of the sky. This allows the detector to focus on the neutrino flux produced by galactic cosmic ray interactions in the bulk of the Milky Way. Studies on possible neutrino signals using ANTARES data collected are reported in this paper, as well as the prospects for the next-generation neutrino telescope, KM3NeT/ARCA, to be built in the Mediterranean Sea. In particular, ANTARES can already test the propagation mechanisms of cosmic rays in the Milky Way by constraining the contribution from the Galactic Plane to the total neutrino flux observed by IceCube. The KM3NeT/ARCA detector will then allow the detailed study of galactic neutrino fluxes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Greisen et al., Phys. Rev. Lett. 16, 748 (1966)

    Article  ADS  Google Scholar 

  2. G.T. Zatsepin, V.A. Kuz'min, JETP Lett. 4, 78 (1966)

    ADS  Google Scholar 

  3. S.R. Kelner, F.A. Aharonian, V.V. Bugayov, Phys. Rev. D 74, 034018 (2006)

    Article  ADS  Google Scholar 

  4. K. Mannheim, R. Protheroe, J.P. Rachen, Phys. Rev. D 63, 023003 (2001)

    Article  ADS  Google Scholar 

  5. E. Fermi, Phys. Rev. 75, 1169 (1949)

    Article  ADS  Google Scholar 

  6. E. Fermi, Astrophys. J. 119, 1 (1954)

    Article  ADS  Google Scholar 

  7. F. Vissani, Astropart. Phys. 26, 310 (2006)

    Article  ADS  Google Scholar 

  8. M. Spurio, Particle and Astrophysics. A Multi-Messenger Approach (Springer, 2014) ISBN 978-3-319-08050-5

  9. E. Waxman, J. Bahcall, Phys. Rev. D 59, 023002 (1998)

    Article  ADS  Google Scholar 

  10. E. Waxman, J. Bahcall, Phys. Rev. D 64, 023002 (2001)

    Article  ADS  Google Scholar 

  11. A. Loeb, E. Waxman, J. Cosmol. Astropart. Phys. 05, 003 (2006)

    Article  ADS  Google Scholar 

  12. D. Guetta et al., Astropart. Phys. 20, 429 (2004)

    Article  ADS  Google Scholar 

  13. K. Mannheim, Astron. Astrophys. 269, 67 (1993)

    ADS  Google Scholar 

  14. B.P. Abbott et al., Phys. Rev. Lett. 116, 061102 (2016)

    Article  ADS  Google Scholar 

  15. S. Adrián-Martínez et al., Phys. Rev. D 93, 122010 (2016)

    Article  ADS  Google Scholar 

  16. A. Palladino et al., Eur. Phys. J. C 76, 52 (2015)

    Article  ADS  Google Scholar 

  17. T. Chiarusi, M. Spurio, Eur. Phys. J. C 65, 649 (2010)

    Article  ADS  Google Scholar 

  18. M.A. Markov, in Proceedings of the ICHEP Conference (University of Rochester, 1960) p. 183

  19. A. Karle, in Proceedings of the 31st ICRC, Lodz, Poland, 2009

  20. F. Halzen, Eur. Phys. J. C 46, 669 (2006)

    Article  ADS  Google Scholar 

  21. S. Adrián-Martínez et al., J. Phys. G: Nucl. Part. Phys. 43, 084001 (2016)

    Article  ADS  Google Scholar 

  22. S. Biagi, Nucl. Instrum. Methods Phys. Res. A (2017) DOI:10.1016/j.nima.2017.02.073

  23. M.G. Aartsen et al., Science 342, 1242856 (2013)

    Article  Google Scholar 

  24. M.G. Aartsen et al., Phys. Rev. Lett. 113, 101101 (2014)

    Article  ADS  Google Scholar 

  25. C. Kopper, N. Kurahashi, Neilson et al., PoS ICRC2015, 1081 (2016)

    Google Scholar 

  26. M.G. Aartsen et al., Phys. Rev. D 91, 022001 (2015)

    Article  ADS  Google Scholar 

  27. M.G. Aartsen et al., Astrophys. J. 809, 98 (2015)

    Article  ADS  Google Scholar 

  28. M.G. Aartsen et al., Phys. Rev. Lett. 115, 081102 (2015)

    Article  ADS  Google Scholar 

  29. T.K. Gaisser et al., Phys. Rev. D 90, 023009 (2014)

    Article  ADS  Google Scholar 

  30. M.G. Aartsen et al., Phys. Rev. Lett. 114, 171102 (2015)

    Article  ADS  Google Scholar 

  31. E. Waxman, arXiv:1511.00815 (2015)

  32. E. Resconi et al., Mon. Not. R. Astron. Soc. 468, 597 (2017)

    Article  ADS  Google Scholar 

  33. K. Murase, D. Guetta, M. Ahlers, Phys. Rev. Lett. 116, 071101 (2016)

    Article  ADS  Google Scholar 

  34. K. Murase, arXiv:1511.01590 (2015)

  35. M. Ahlers, High-Energy Neutrinos in Light of Fermi-LAT, in Proceedings of the 2014 Fermi Symposium Proceedings (2015) eConf: C14102.1, arXiv:1503.00437

  36. M. Re Fiorentin, V. Niro, N. Fornengo, JHEP 2016, 22 (2016)

    Article  Google Scholar 

  37. M. Ahlers, F. Halzen, Phys. Rev. D. 90, 043005 (2014)

    Article  ADS  Google Scholar 

  38. M. Spurio, Phys. Rev. D 90, 103004 (2014)

    Article  ADS  Google Scholar 

  39. A. Palladino, F. Vissani, Astrophys. J. 826, 185 (2016)

    Article  ADS  Google Scholar 

  40. A. Neronov, D. Semikoz, C. Tchernin, Phys. Rev. D 89, 103002 (2014)

    Article  ADS  Google Scholar 

  41. D. Gaggero et al., Astrophys. J. Lett. 815, L25 (2015)

    Article  ADS  Google Scholar 

  42. A. Palladino, M. Spurio, F. Vissani, J. Cosmol. Astropart. Phys. 16, 045 (2016)

    Article  Google Scholar 

  43. Y.Q. Guo, H.B. Hu, Z. Tian, Chin. Phys. C 40, 115001 (2016)

    Article  ADS  Google Scholar 

  44. A.A. Abdo et al., Science 327, 1103 (2010)

    Article  ADS  Google Scholar 

  45. A. Abramowski et al., Nature 531, 476 (2016)

    Article  ADS  Google Scholar 

  46. S. Celli, A. Palladino, F. Vissani, Eur. Phys. J. C 77, 66 (2017)

    Article  ADS  Google Scholar 

  47. D. Gaggero et al., PoS ICRC2015, 1126 (2016)

    Google Scholar 

  48. A.W. Strong, I.V. Moskalenko, V.S. Ptuskin, Annu. Rev. Nucl. Part. Sci. 57, 285 (2007)

    Article  ADS  Google Scholar 

  49. V. Moskalenko, in Proceedings of the 32nd ICRC, Vol. 6 (2011) pp. 279--282

  50. http://dragon.hepforge.org

  51. M. Ackermann et al., Astrophys. J. 750, 3 (2012)

    Article  ADS  Google Scholar 

  52. M. Kachelreiss, S. Ostapchenko, Phys. Rev. D 90, 083002 (2014)

    Article  ADS  Google Scholar 

  53. J. Krause, G. Morlino, S. Gabici, PoS ICRC2015, 518 (2016)

    Google Scholar 

  54. T. Prodanović, B.D. Fields, J.F. Beacom, Astropart. Phys. 27, 10 (1997)

    Article  ADS  Google Scholar 

  55. S. Snowden et al., Astrophys. J. 485, 125 (1997)

    Article  ADS  Google Scholar 

  56. J.M. Casandjian, arXiv:1502.07210 (2015)

  57. O. Adriani et al., Science 332, 69 (2011)

    Article  ADS  Google Scholar 

  58. M. Aguilar et al., Phys. Rev. Lett. 114, 171103 (2015)

    Article  ADS  Google Scholar 

  59. E. Visser, Neutrinos from the Milky Way, PhD Thesis at University of Leiden (2015)

  60. M. Ageron et al., Nucl. Instrum. Methods A 656, 11 (2011)

    Article  ADS  Google Scholar 

  61. M. Ageron et al., Astropart. Phys. 31, 277 (2009)

    Article  ADS  Google Scholar 

  62. P. Amram et al., Nucl. Instrum. Methods Phys. Res. A 484, 369 (2002)

    Article  ADS  Google Scholar 

  63. J.A. Aguilar et al., Nucl. Instrum. Methods Phys. Res. A 555, 132 (2005)

    Article  ADS  Google Scholar 

  64. J.A. Aguilar et al., Nucl. Instrum. Methods Phys. Res. A 622, 59 (2010)

    Article  ADS  Google Scholar 

  65. J.A. Aguilar et al., Nucl. Instrum. Methods Phys. Res. A 570, 106 (2007)

    Article  ADS  Google Scholar 

  66. A. Heijboer, in Proceedings of the 31st ICRC, Lodz, Poland (2009) arXiv:0908.0816

  67. S. Klimushin, E. Bugaev, I. Sokalski, in Proceedings of the 27th ICRC, Hamburg, Germany (2001) arXiv:hep-ph/0106010

  68. J. Schnabel et al., Nucl. Instrum. Methods Phys. Res. A 725, 106 (2013)

    Article  ADS  Google Scholar 

  69. D. Palioselitis, Measurement of the atmospheric neutrino energy spectrum, PhD Thesis at University of Amsterdam (2013)

  70. F. Schüssler, in Proceedings of the 33rd ICRC, Rio de Janeiro, Brazil, (2013) p. 0421

  71. M. Circella et al., Nucl. Instrum. Methods A 602, 1 (2009)

    Article  ADS  Google Scholar 

  72. H. van Haren et al., Deep-Sea Res. I 58, 875 (2011)

    Article  Google Scholar 

  73. L.A. Fusco, A. Margiotta et al., EPJ Web of Conferences 116, 02002 (2016)

    Article  Google Scholar 

  74. Particle Data Group (K.A. Olive et al.), Chin. Phys. C 38, 090001 (2014)

    Article  Google Scholar 

  75. G. Carminati et al., Comput. Phys. Commun. 179, 12, 915 (2008)

    Article  Google Scholar 

  76. Y. Becherini et al., Astropart. Phys. 25, 1 (2006)

    Article  ADS  Google Scholar 

  77. L.V. Volkova, G.T. Zatsepin, Sov. J. Nucl. Phys. 37, 212 (1980)

    Google Scholar 

  78. T.K. Gaisser, Cosmic Rays and Particle Physics (Cambridge University Press, Cambridge, 1991) ISBN: 978-0521339315

  79. G.D. Barr et al., Phys. Rev. D 70, 023006 (2004) (the extension of high energy in 2009 is available on-line at: http://www-pnp.physics.ox.ac.uk/~barr/fluxfiles/

    Article  ADS  Google Scholar 

  80. M. Honda et al., Phys. Rev. D 75, 043006 (2007)

    Article  ADS  Google Scholar 

  81. G.D. Barr et al., Phys. Rev. D 74, 094009 (2006)

    Article  ADS  Google Scholar 

  82. C.G.S. Costa, Astropart. Phys. 16, 193 (2001)

    Article  ADS  Google Scholar 

  83. A. Martin et al., Acta Phys. Pol. B 34, 3273 (2003)

    ADS  Google Scholar 

  84. R. Enberg et al., Phys. Rev. D 78, 043005 (2008)

    Article  ADS  Google Scholar 

  85. S. Adrián-Martínez et al., Eur. Phys. J. C 73, 2606 (2013)

    Article  ADS  Google Scholar 

  86. A.N. Tikhonov, Sov. Math. 4, 1035 (1963)

    Google Scholar 

  87. A. Hocker, V. Kartvelishvili, Nucl. Instrum. Methods Phys. Res. A 372, 496 (1996)

    Article  Google Scholar 

  88. G. D'Agostini, Nucl. Instrum. Methods Phys. Res. A 362, 487 (1995)

    Article  ADS  Google Scholar 

  89. R. Abbasi et al., Astropart. Phys. 34, 48 (2010)

    Article  ADS  Google Scholar 

  90. R. Abbasi et al., Phys. Rev. D 83, 012001 (2011)

    Article  ADS  Google Scholar 

  91. R. Abbasi et al., Phys. Rev. D 79, 102005 (2009)

    Article  ADS  Google Scholar 

  92. R. Abbasi et al., Phys. Rev. D 84, 082001 (2011)

    Article  ADS  Google Scholar 

  93. M. Ackermann et al., Astrophys. J. 793, 64 (2014)

    Article  ADS  Google Scholar 

  94. G.C. Hill, K. Rawlins, Astropart. Phys. 19, 393 (2003)

    Article  ADS  Google Scholar 

  95. G.J. Feldman, R.D. Cousins, Phys. Rev. D 57, 3873 (1998)

    Article  ADS  Google Scholar 

  96. S. Adrián-Martínez et al., Phys. Lett. B 760, 143 (2016)

    Article  ADS  Google Scholar 

  97. S. Adrián-Martínez et al., Astrophys. J. Lett. 786, L5 (2014)

    Article  ADS  Google Scholar 

  98. A. Albert, New Constraints on all flavour Galactic diffuse neutrino emission with the ANTARES telescope, arXiv:1705.00497 (2017)

  99. T. Michael et al., PoS ICRC2015, 1078 (2016)

    Google Scholar 

  100. A. Trovato, in Proceedings of the Neutrino 2016 Conference, London, UK (2017)

  101. D. Stransky et al., PoS ICRC2015, 1108 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Antonio Fusco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fusco, L.A. Diffuse neutrino emissions from the Southern sky and Mediterranean neutrino telescopes. Eur. Phys. J. Plus 132, 353 (2017). https://doi.org/10.1140/epjp/i2017-11616-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11616-4

Navigation