Skip to main content
Log in

A singular one-dimensional bound state problem and its degeneracies

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

We give a brief exposition of the formulation of the bound state problem for the one-dimensional system of N attractive Dirac delta potentials, as an \(N \times N\) matrix eigenvalue problem (\(\Phi A =\omega A\)). The main aim of this paper is to illustrate that the non-degeneracy theorem in one dimension breaks down for the equidistantly distributed Dirac delta potential, where the matrix \(\Phi\) becomes a special form of the circulant matrix. We then give elementary proof that the ground state is always non-degenerate and the associated wave function may be chosen to be positive by using the Perron-Frobenius theorem. We also prove that removing a single center from the system of N delta centers shifts all the bound state energy levels upward as a simple consequence of the Cauchy interlacing theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu.N. Demkov, V.N. Ostrovskii, Zero-range Potentials and Their Applications in Atomic Physics (Plenum Press, 1988)

  2. M. Belloni, R.W. Robinett, Phys. Rep. 540, 25 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  3. R. de L. Kronig, W.G. Penney, Proc. R. Soc. A 130, 499 (1931)

    Article  ADS  Google Scholar 

  4. C. Cohen-Tannoudji, B. Diu, F. Laloe, Quantum Mechanics, Vol. 1 (Wiley-Interscience, 2006)

  5. I.R. Lapidus, Am. J. Phys. 38, 905 (1970)

    Article  ADS  Google Scholar 

  6. D.J. Griffiths, Introduction to Quantum Mechanics (Pearson Education, 2005)

  7. L.D. Landau, E.M. Lifshitz, Quantum Mechanics (Pergamon Press, 1977)

  8. R. Loudon, Am. J. Phys. 27, 649 (1959)

    Article  ADS  Google Scholar 

  9. W. Kwong, J.L. Rosner, J.F. Schonfeld, C. Quigg, H.B. Thacker, Am. J. Phys. 48, 926 (1980)

    Article  ADS  Google Scholar 

  10. J.M. Cohen, B. Kuharetz, J. Math. Phys. 34, 12 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  11. K. Bhattacharyya, R.K. Pathak, Int. J. Quantum Chem. 59, 219 (1996)

    Article  Google Scholar 

  12. S. Kar, R.R. Parwani, EPL 80, 30004 (2007)

    Article  ADS  Google Scholar 

  13. S. De Vincenzo, Braz. J. Phys. 38(3a), 355 (2008)

    ADS  Google Scholar 

  14. A. Dutt, T. Nath, S. Kar, R. Parwani, Eur. Phys. J. Plus 127, 28 (2012)

    Article  Google Scholar 

  15. C.D. Meyer, Matrix Analysis and Applied Linear Algebra (SIAM, 2000)

  16. S. Albeverio, F. Gesztesy, R. Hoegh-Krohn, H. Holden, Solvable Models in Quantum Mechanics, 2nd ed. (AMS, 2004)

  17. G. Bonneau, J. Faraut, G. Valent, Am. J. Phys. 69, 3 (2001)

    Article  Google Scholar 

  18. V.S. Araujo, F.A.B. Coutinho, J.F. Perez, Am. J. Phys. 72, 2 (2004)

    Article  Google Scholar 

  19. R.B. Ash, W.P. Novinger, Complex Analysis (Dover, 2007)

  20. P. Dennery, A. Krzywicki, Mathematics for Physicists (Dover, 1996)

  21. R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey, D.E. Knuth, Adv. Comput. Math. 5, 329 (1996)

    Article  MathSciNet  Google Scholar 

  22. S. Tunalı, Point interactions in quantum mechanics, Ms Thesis, İzmir Institute of Technology, 2014

  23. H. Kovarik, A. Sacchetti, J. Phys. A 43, 155205 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  24. E.B. Manoukian, Quantum Theory: A Wide Spectrum (Springer, 2006)

  25. R.P. Feynman, Phys. Rev. 56, 340 (1939)

    Article  ADS  Google Scholar 

  26. H. Hellmann, Einführung in die Quantenchemie (Franz Deuticke, Leipzig, 1937) p. 285

  27. S.R. Vatsya, Phys. Rev. B 69, 037102 (2004)

    Article  ADS  Google Scholar 

  28. J. Dorsey, C.R. Johnson, Z. Wei, Spec. Matrices 2, 200 (2014)

    Google Scholar 

  29. J.W. Brown, R.V. Churchill, Complex Variables and Applications, Eighth edition (McGraw-Hill, 2004)

  30. G. Palma, U. Raff, Can. J. Phys. 84, 787 (2006)

    Article  ADS  Google Scholar 

  31. M. Reed, B. Simon, Methods of Modern Mathematical Physics, Vol. IV (Academic Press, 1978)

  32. F. Erman, O.T. Turgut, J. Phys. A 43, 335204 (2010)

    Article  MathSciNet  Google Scholar 

  33. F. Ninio, J. Phys. A 9, 1281 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  34. A. Sacchetti, J. Phys. A 49, 175301 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  35. S.-G. Hwang, Am. Math. Mon. 111, 157 (2004)

    Article  Google Scholar 

  36. J. Steward, Calculus: Early Transcendentals, 7th edition (Brooks/Cole, Cengage Learning, 2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Erman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erman, F., Gadella, M., Tunalı, S. et al. A singular one-dimensional bound state problem and its degeneracies. Eur. Phys. J. Plus 132, 352 (2017). https://doi.org/10.1140/epjp/i2017-11613-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11613-7

Navigation