Skip to main content
Log in

Effect of Knudsen thermal force on the performance of low-pressure micro gas sensor

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this paper, Direct Simulation Monte Carlo (DSMC) simulations were applied to investigate the mechanism of the force generation inside a low-pressure gas sensor. The flow feature and force generation mechanism inside a rectangular enclosure with heat and cold arms as the non-isothermal walls are comprehensively explained. In addition, extensive parametric studies are done to study the effects of physical parameters on the performance and characteristics of this device in different operating conditions. In this research, the Knudsen number is varied from 0.1 to 4.5 (0.5 to 11torr) to reveal all the characteristics of the thermally driven force inside the MEMS sensor. In order to simulate a rarefied gas inside the micro gas detector, Boltzmann equations are applied to obtain high-precision results. The effects of ambient pressure and temperature difference of arms are comprehensively investigated. Our findings show that maximum force increases more than 7 times when the temperature difference of the cold and hot arms is increased from 10 to 100K. In addition, the results demonstrate that the thermal gradient at rarefied pressure induces complex structure, and the mechanism of force generation highly varies at different pressure conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.C. Maxwell, Philos. Trans. R. Soc. London 27, 231 (1879)

    Article  Google Scholar 

  2. O. Reynolds, Philos. Trans. R. Soc. London 166, 725 (1876)

    Article  Google Scholar 

  3. A. Einstein, Z. Phys. 27, 1 (1924)

    Article  ADS  Google Scholar 

  4. A. Ketsdever, N. Gimelshein, S. Gimelshein, N. Selden, Vacuum 86, 1644 (2012)

    Article  ADS  Google Scholar 

  5. W. Crookes, Philos. Trans. R. Soc. London 164, 501 (1874)

    Article  Google Scholar 

  6. A. Passian, R. Warmack, T. Ferrell, T. Thundat, Phys. Rev. Lett. 90, 124503 (2003)

    Article  ADS  Google Scholar 

  7. S.V. Sista, E. Bhattacharya, J. Micromech. Microeng. 24, 045003 (2014)

    Article  Google Scholar 

  8. V. Kaajakari, A. Lal, J. Microelectromech. Syst. 12, 425 (2003)

    Article  Google Scholar 

  9. A.D. Strongrich, W.J. O’Neill, A.G. Cofer, A.A. Alexeenko, Vacuum 109, 405 (2014)

    Article  ADS  Google Scholar 

  10. A. Strongrich, A. Alexeenko, Appl. Phys. Lett. 107, 193508 (2015)

    Article  ADS  Google Scholar 

  11. A.D. Strongrich, A.J. Pikus, I.B. Sebastiao, D. Peroulis, A.A. Alexeenko, Low-pressure gas sensor exploiting the Knudsen thermal force: Dsmc modeling and experimental validation, in 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2016) pp. 828--831

  12. Manuel Vargas, Giorgos Tatsios, Phys. Fluids 26, 057101 (2014)

    Article  ADS  Google Scholar 

  13. Ryan W. Bosworth, A.L. Ventura, A.D. Ketsdever, S.F. Gimelshein, J. Fluid Mech. 805, 207 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  14. Ventura, Austin, Natalia Gimelshein, Sergey Gimelshein, Andrew Ketsdever, J. Fluid Mech. 735, 684 (2013)

    Article  ADS  Google Scholar 

  15. D. Bond, M.J. Goldsworthy, V. Wheatley, Int. J. Heat Mass Transfer 85, 971 (2015)

    Article  Google Scholar 

  16. D.M. Bond, V. Wheatley, M. Goldsworthy, Int. J. Heat Mass Transfer 76, 1 (2014)

    Article  Google Scholar 

  17. Mirzaei, Masoud, Amin Poozesh, Phys. Rev. E 87, 063312 (2013)

    Article  ADS  Google Scholar 

  18. Poozesh, Amin, Masoud Mirzaei, J. Stat. Phys. 166, 354 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  19. Mojtaba Balaj, Ehsan Roohi, Hassan Akhlaghi, Int. J. Heat Mass Transfer 83, 69 (2015)

    Article  Google Scholar 

  20. Xiaohui Guo, Dhruv Singh, Jayathi Murthy, Alina A. Alexeenko, Phys. Rev. E 80, 046310 (2009)

    Article  ADS  Google Scholar 

  21. N. Selden, C. Ngalande, S. Gimelshein, E.P. Muntz, A. Alexeenko, A. Ketsdever, Phys. Rev. Lett. 79, 041201 (2009)

    ADS  Google Scholar 

  22. J. Nabeth, S. Chigullapalli, A.A. Alexeenko, Phys. Rev. E 83, 066306 (2011)

    Article  ADS  Google Scholar 

  23. G.A. Bird, Molecular gas dynamics and the direct simulation of gas flows (Clarendon Press, Oxford, 1994)

  24. OpenFOAM: The Open Source CFD Toolbox, user Guide, Version 1.6 (2009)

  25. Taishan Zhu, Wenjing Ye, Phys. Rev. E 82, 036308 (2010)

    Article  Google Scholar 

  26. S. McNamara, Y.B. Gianchandani, J. Microelectromech. Syst. 14, 741 (2005)

    Article  Google Scholar 

  27. Taishan Zhu, Wenjing Ye, Jun Zhang, Phys. Rev. E 84, 056316 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Barzegar Gerdroodbary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barzegar Gerdroodbary, M., Ganji, D.D., Taeibi-Rahni, M. et al. Effect of Knudsen thermal force on the performance of low-pressure micro gas sensor. Eur. Phys. J. Plus 132, 315 (2017). https://doi.org/10.1140/epjp/i2017-11587-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11587-4

Navigation