Skip to main content
Log in

The effect of the GUP on massive vector and scalar particles tunneling from a warped DGP gravity black hole

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

This paper discusses the effects of the mass and angular momentum of massive vector and scalar particles on the Hawking temperature manifested under the effects of the generalized uncertainty principle (GUP). In particular, we calculate the Hawking temperature of a black hole in a warped DGP gravity model in the framework of the quantum tunneling method. We use the modified Proca and Klein-Gordon equations previously determined from the GUP Lagrangian in the spacetime background of a warped Dvali-Gabadadze-Porrati (DGP) metric, with the help of Hamilton-Jacobi (HJ) and semiclassical (WKB) approximation methods. We find that as a special case of a warped DGP black hole solution, the Hawking temperature of a Schwarzschild-de Sitter (SdS) black hole can be determined. Furthermore, the Hawking temperature is influenced by the mass and the angular momentum of vector and scalar particles and depends on which of those types of particles is being emitted by the black hole. We conclude that the nonthermal nature of the Hawking spectrum leads to Planck-scale nonthermal correlations, shedding light on the information paradox in black hole evaporation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Jawad, S. Rani, I. Salako et al., Eur. Phys. J. Plus 131, 236 (2016)

    Article  Google Scholar 

  2. Shamaila Rani, Abdul Jawad, Int. J. Mod. Phys. D 25, 1650102 (2016)

    Article  Google Scholar 

  3. J. Dutta, W. Khyllep, E. Syiemlieh, Eur. Phys. J. Plus 131, 33 (2016)

    Article  Google Scholar 

  4. A. Jawad, Astrophys. Space Sci. 360, 52 (2015)

    Article  ADS  Google Scholar 

  5. A. Jawad, I.G. Salako, Eur. Phys. J. Plus 130, 198 (2015)

    Article  Google Scholar 

  6. A. Sheykhi, M.H. Dehghani, S. Ghaffari, Int. J. Mod. Phys. D 25, 1650018 (2016)

    Article  ADS  Google Scholar 

  7. D. Bazeia, F.A. Brito, F.G. Costa, Phys. Lett. B 742, 317 (2015)

    Article  ADS  Google Scholar 

  8. Y. Tomikawa, T. Shiromizu, K. Izumi, Phys. Rev. D 90, 126001 (2014)

    Article  ADS  Google Scholar 

  9. D. Dai, D. Stojkovic, B. Wang, C. Zhang, Phys. Rev. D 90, 064031 (2014)

    Article  ADS  Google Scholar 

  10. Y.W. Liu, K. Izumi, M. Bouhmadi-Lpez et al., Eur. Phys. J. C 75, 248 (2015)

    Article  ADS  Google Scholar 

  11. H. Farajollahi, A. Ravanpak, Astrophys. Space Sci. 349, 961 (2014)

    Article  ADS  Google Scholar 

  12. Martn G. Richarte, Phys. Rev. D 87, 067503 (2013)

    Article  ADS  Google Scholar 

  13. S.W. Hawking, Commun. Math. Phys. 43, 199 (1975)

    Article  ADS  Google Scholar 

  14. G.W. Gibbons, S.W. Hawking, Phys. Rev. D 15, 2752 (1977)

    Article  ADS  Google Scholar 

  15. G.W. Gibbons, S.W. Hawking, Phys. Rev. D 15, 2738 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  16. M.A. Anacleto, F.A. Brito, E. Passos, Phys. Lett. B 749, 181 (2015)

    Article  ADS  Google Scholar 

  17. M.A. Anacleto, F.A. Brito, G.C. Luna, E. Passos, J. Spinelly, Ann. Phys. 362, 436 (2015)

    Article  ADS  Google Scholar 

  18. Abdel Nasser Tawfik, Abdel Magied Diab, Int. J. Mod. Phys. A 30, 1550059 (2015)

    Article  Google Scholar 

  19. Abdel Nasser Tawfik, Eiman Abou El Dahab, Int. J. Mod. Phys. A 30, 1550030 (2015)

    Article  Google Scholar 

  20. Abdel Nasser Tawfik, Abdel Magied Diab, Rep. Prog. Phys. 78, 126001 (2015)

    Article  ADS  Google Scholar 

  21. Abdel Nasser Tawfik, Abdel Magied Diab, Int. J. Mod. Phys. D 23, 1430025 (2014)

    Article  Google Scholar 

  22. Mir Faizal, Mohammed M. Khalil, Int. J. Mod. Phys. A 30, 1550144 (2015)

    Article  Google Scholar 

  23. M. Faizal, B. Majumder, Ann. Phys. 357, 49 (2015)

    Article  ADS  Google Scholar 

  24. S. Pramanik, M. Faizal, M. Moussa, A.F. Ali, Ann. Phys. 362, 24 (2015)

    Article  ADS  Google Scholar 

  25. A.F. Ali, M. Faizal, M.M. Khalil, JCAP 09, 025 (2015)

    Article  Google Scholar 

  26. R. Garattini, M. Faizal, Nucl. Phys. B 905, 313 (2016)

    Article  ADS  Google Scholar 

  27. P. Kraus, F. Wilczek, Mod. Phys. Lett. A 9, 3713 (1994)

    Article  ADS  Google Scholar 

  28. P. Kraus, F. Wilczek, Nucl. Phys. B 437, 231 (1995)

    Article  ADS  Google Scholar 

  29. M.K. Parikh, F. Wilczek, Phys. Rev. Lett. 85, 5042 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  30. M.K. Parikh, Phys. Lett. B 546, 189 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  31. M.K. Parikh, Int. J. Mod. Phys. D 13, 2351 (2004)

    Article  ADS  Google Scholar 

  32. M. Angheben, M. Nadalini, L. Vanzo, S. Zerbini, J. High Energy Phys. 05, 014 (2005)

    Article  ADS  Google Scholar 

  33. K. Srinivasan, T. Padmanabhan, Phys. Rev. D 60, 024007 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  34. S. Shankaranarayanan, K. Srinivasan, T. Padmanabhan, Mod. Phys. Lett. 16, 571 (2001)

    Article  ADS  Google Scholar 

  35. L. Vanzo, G. Acquaviva, R. Di Criscienzo, Class. Quantum Grav. 28, 18 (2011)

    Article  Google Scholar 

  36. R. Kerner, R.B. Mann, Phys. Rev. D 73, 104010 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  37. R. Kerner, R.B. Mann, Class. Quantum Grav. 25, 095014 (2008)

    Article  ADS  Google Scholar 

  38. R. Kerner, R.B. Mann, Phys. Lett. B 665, 277 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  39. Alexandre Yale, Robert B. Mann, Phys. Lett. B 673, 168 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  40. Xiang-Qian Li, Ge-Rui Chen, Phys. Lett. B 751, 34 (2015)

    Article  ADS  Google Scholar 

  41. S.I. Kruglov, Mod. Phys. Lett. A 29, 1450203 (2014)

    Article  ADS  Google Scholar 

  42. I. Sakalli, A. Ovgun, Gen. Relativ. Gravit. 48, 1 (2016)

    Article  ADS  Google Scholar 

  43. H. Gursel, I. Sakalli, Can. J. Phys. 94, 147 (2016)

    Article  ADS  Google Scholar 

  44. I. Sakalli, A. Ovgun, Eur. Phys. J. Plus 130, 110 (2015)

    Article  Google Scholar 

  45. Kimet Jusufi, Ali Ovgun, Astrophys. Space Sci. 361, 207 (2016)

    Article  ADS  Google Scholar 

  46. K. Jusufi, A. Ovgun, G. Apostolovska, Adv. High Energy Phys. 2017, 8798657 (2017)

    Article  Google Scholar 

  47. I. Sakalli, A. Ovgun, arXiv:1702.04636

  48. A. Ovgun, arXiv:1609.07804

  49. I. Sakalli, A. Ovgun, K. Jusufi, Astrophys. Space Sci. 361, 330 (2016)

    Article  ADS  Google Scholar 

  50. I. Sakalli, A. Ovgun, J. Astrophys. Astron. 37, 21 (2016)

    Article  ADS  Google Scholar 

  51. A. Ovgun, K. Jusufi, Eur. Phys. J. Plus 131, 177 (2016)

    Article  Google Scholar 

  52. A. Ovgun, Int. J. Theor. Phys. 55, 2919 (2016)

    Article  Google Scholar 

  53. I. Sakalli, A. Ovgun, Astrophys. Space Sci. 359, 32 (2015)

    Article  ADS  Google Scholar 

  54. Kimet Jusufi, EPL 116, 60013 (2016)

    Article  Google Scholar 

  55. Deyou Chen, Houwen Wu, Haitang Yang, Shuzheng Yang, Int. J. Mod. Phys. A 29, 1430054 (2014)

    Article  Google Scholar 

  56. Deyou Chen, Houwen Wu, Haitang Yang, JCAP 03, 036 (2014)

    Article  Google Scholar 

  57. Xiang-Qian Li, Phys. Lett. B 763, 80 (2016)

    Article  ADS  Google Scholar 

  58. N. Arkani-Hamed, S. Dimopoulos, G. Dvali, Phys. Lett. B 429, 263 (1998)

    Article  ADS  Google Scholar 

  59. I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, G. Dvali, Phys. Lett. B 436, 257 (1998)

    Article  ADS  Google Scholar 

  60. L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  61. G.R. Dvali, Gregory Gabadadze, Massimo Porrati, Phys. Lett. B 485, 208 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  62. Malihe Heydari-Fard, Astrophys. Space Sci. 325, 287 (2010)

    Article  ADS  Google Scholar 

  63. M. Atiqur Rahman, M. Ilias Hossain, Phys. Lett. B 712, 1 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  64. Emil T. Akhmedov, Valeria Akhmedova, Douglas Singleton, Phys. Lett. B 642, 124 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  65. Emil T. Akhmedov, Valeria Akhmedova, Terry Pilling, Douglas Singleton, Int. J. Mod. Phys. A 22, 1705 (2007)

    Article  ADS  Google Scholar 

  66. Borun D. Chowdhury, Pramana 70, 593 (2008) 70

    Article  Google Scholar 

  67. V. Akhmedova, T. Pilling, A. de Gill, D. Singleton, Phys. Lett. B 666, 269 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  68. Emil T. Akhmedov, Terry Pilling, Douglas Singleton, Int. J. Mod. Phys. D 17, 2453 (2008)

    Article  ADS  Google Scholar 

  69. Valeria Akhmedova, Terry Pilling, Andrea de Gill, Douglas Singleton, Phys. Lett. B 673, 227 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  70. Alexandre Yale, Eur. Phys. J. C 71, 1622 (2011)

    Article  ADS  Google Scholar 

  71. Douglas Singleton, Elias C. Vagenas, Tao Zhu, Ji-Rong Ren, JHEP 08, 089 (2010) 01

    Article  Google Scholar 

  72. Douglas Singleton, Elias C. Vagenas, Tao Zhu, JHEP 05, 074 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Övgün.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Övgün, A., Jusufi, K. The effect of the GUP on massive vector and scalar particles tunneling from a warped DGP gravity black hole. Eur. Phys. J. Plus 132, 298 (2017). https://doi.org/10.1140/epjp/i2017-11574-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11574-9

Navigation