Skip to main content
Log in

Effects of lubricated surface in the oblique stagnation point flow of a micro-polar fluid

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this investigation, we have considered steady, two-dimensional, oblique flow of a micro-polar fluid towards a stagnation point over a lubricated plate. A power-law fluid is utilized for the purpose of lubrication. To derive the slip condition in the present flow situation, continuity of shear stress and velocity has been imposed at the fluid lubricant interface. The set of non-linear coupled ordinary differential equations subject to boundary conditions is solved by a powerful numerical technique called the Keller-box method. Some important flow features have been analyzed and discussed under the influence of slip parameter \(\lambda\), the material parameter K, a free parameter \(\beta\) and ratio of micro-rotation to the skin friction parameter n . The main purpose of the present article is to analyze the reduction in the shear stress and shift of stagnation point in the presence of lubrication as compared to the viscous fluid that may be beneficial during polymeric processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.T. Stuart, J. Aerospace Sci. 26, 124 (1959)

    Article  Google Scholar 

  2. K.J. Tamada, J. Phys. Soc. Jpn. 46, 310 (1979)

    Article  ADS  Google Scholar 

  3. J.M. Dorrepaal, J. Fluid Mech. 163, 141 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  4. N. Takemitsu, Y. Matunoba, J. Phys. Soc. Jpn. 47, 1347 (1979)

    Article  ADS  Google Scholar 

  5. C.Y. Wang, Z. Angew. Math. Phys. 54, 184 (2003)

    Article  MathSciNet  Google Scholar 

  6. B.S. Tilley, P.D. Weidman, Eur. J. Mech. B/Fluids 17, 205 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  7. P. Drazin, N. Riley, The Navier-Stokes equations: a classification of flows and exact solutions, in London Mathematical Society Lecture Note Series, Vol. 334 (Cambridge University Press, Cambridge, 2006)

  8. R.M. Tooke, M.G. Blyth, Phys. Fluids 20, 033101 (2008)

    Article  ADS  Google Scholar 

  9. Abuzar Ghaffari, Tariq Javed, Fotini Labropulu, Thermal Sci. (2015) DOI:10.2298/TSCI150411163G

  10. A. Ghaffari, T. Javed, A. Majeed, Transp. Porous Media 113, 245 (2016)

    Article  MathSciNet  Google Scholar 

  11. C.Y. Wang, Z. Angew. Math. Phys. 54, 184 (2003)

    Article  MathSciNet  Google Scholar 

  12. F. Labropulu, D. Li, Int. J. Non-Linear Mech. 43, 941 (2008)

    Article  ADS  Google Scholar 

  13. M.G. Blyth, C. Pozrikidis, Acta Mech. 180, 203 (2005)

    Article  Google Scholar 

  14. B. Santra, B.S. Dandapat, H.I. Andersson, Acta Mech. 194, 1 (2007)

    Article  Google Scholar 

  15. M. Sajid, K. Mahmood, Z. Abbas, Chin. Phys. Lett. 29, 024702 (2012)

    Article  ADS  Google Scholar 

  16. P.A. Thompson, S.M. Troian, Nature 389, 360 (1997)

    Article  ADS  Google Scholar 

  17. K. Mahmood, M. Sajid, N. Ali, Z. Naturforsch. A 71, 273 (2016)

    Google Scholar 

  18. K. Mahmood, M. Sajid, N. Ali, T. Javed, Int. J. Phys. Sci. 11, 96 (2016)

    Article  Google Scholar 

  19. J.W. Hoyt, A.G. Fabula, The Effect of Additives on Fluid Friction, U. S., Naval Ordinance Test Station Report, Inyokern, USA (1964)

  20. A.C. Eringen, Theory of Micro Polar Continua, in Proceedings, 9th Midwestern Conference, University of Wisconsin, Madison, USA (1965)

  21. A.C. Eringen, Int. J. Eng. Sci. 2, 205 (1964)

    Article  Google Scholar 

  22. A.C. Eringen, J. Math. Mech. 16, 1 (1966)

    MathSciNet  Google Scholar 

  23. G. Ahmadi, Int. J. Eng. Sci. 14, 639 (1976)

    Article  Google Scholar 

  24. T. Ariman et al., Int. J. Eng. Sci. 11, 905 (1973)

    Article  Google Scholar 

  25. T. Ariman et al., Int. J. Eng. Sci. 12, 273 (1974)

    Article  Google Scholar 

  26. G.S. Guram, A.C. Smith, Comput. Math. Appl. 6, 213 (1980)

    Article  MathSciNet  Google Scholar 

  27. J. Peddieson, Int. J. Eng. Sci. 10, 23 (1972)

    Article  Google Scholar 

  28. R. Nazar et al., Int. J. Non-Linear Mech. 39, 1227 (2004)

    Article  ADS  Google Scholar 

  29. C.L. Chang, J. Phys. D: Appl. Phys. 39, 1132 (2006)

    Article  ADS  Google Scholar 

  30. Y.Y. Lok et al., Int. J. Eng. Sci. 45, 173 (2007)

    Article  MathSciNet  Google Scholar 

  31. A. Ishak et al., Comput. Math. Appl. 56, 3188 (2008)

    Article  MathSciNet  Google Scholar 

  32. H.B. Keller, T. Cebeci, AIAA J. 10, 1193 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  33. V. Bradshaw, T. Cebeci, I.H. Whitelaw, Engineering Calculation Methods For Turbulent Flows (Academic, London, 1981)

  34. H.B. Keller, A New Difference Scheme For Parabolic Problems, in Numerical Solution of Partial Differential Equations, edited by J. Bramble, Vol. II (Academic, New York, 1970)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Mahmood.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmood, K., Sajid, M., Ali, N. et al. Effects of lubricated surface in the oblique stagnation point flow of a micro-polar fluid. Eur. Phys. J. Plus 132, 297 (2017). https://doi.org/10.1140/epjp/i2017-11572-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11572-y

Navigation