Skip to main content
Log in

Quasi-four-particle first-order Faddeev-Watson-Lovelace terms in proton-helium scattering

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The Faddeev-Watson-Lovelace equations, which are typically used for solving three-particle scattering problems, are based on the assumption of target having one active electron while the other electrons remain passive during the collision process. So, in the case of protons scattering from helium or helium-like targets, in which there are two bound-state electrons, the passive electron has a static role in the collision channel to be studied. In this work, we intend to assign a dynamic role to all the target electrons, as they are physically active in the collision. By including an active role for the second electron in proton-helium-like collisions, a new form of the Faddeev-Watson-Lovelace integral equations is needed, in which there is no disconnected kernel. We consider the operators and the wave functions associated with the electrons to obey the Pauli exclusion principle, as the electrons are indistinguishable. In addition, a quasi-three-particle collision is assumed in the initial channel, where the electronic cloud is represented as a single identity in the collision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.D. Faddeev, Sov. Phys. JETP 12, 1014 (1961)

    Google Scholar 

  2. C. Lovelace, Phys. Rev. 135, B1225 (1964) and C. Lovelace, Strong Interaction and High-Energy Physics

    Article  ADS  MathSciNet  Google Scholar 

  3. K.M. Watson, Phys. Rev. 88, 1163 (1952) and M.L. Goldberger, K.M. Watson, Collision Theory

    Article  ADS  Google Scholar 

  4. J. Macek, S. Alston, Phys. Rev. A 26, 250 (1982)

    Article  ADS  Google Scholar 

  5. M.F. Ferreira da Silva, J.M.P. Serrao, J. Phys. B: At. Mol. Opt. Phys. 36, 2357 (2003)

    Article  ADS  Google Scholar 

  6. E.O. Alt, A.S. Kadyrov, A.M. Mukhamedzhanov, Phys. Rev. A 60, 314 (1999)

    Article  ADS  Google Scholar 

  7. K. Taulbjerg, J.S. Briggs, J. Phys. B: At. Mol. Phys. 16, 3811 (1983)

    Article  ADS  Google Scholar 

  8. D.S. Crothers, K.M. Dunseath, J. Phys. B: At. Mol. Opt. Phys. 23, L365 (1990)

    Article  ADS  Google Scholar 

  9. Dž. Belkić, S. Saini, H.S. Taylor, Phys. Rev. A 36, 1601 (1987)

    Article  ADS  Google Scholar 

  10. M.J. MacCann, Y.H. Ng, Phys. Scr. A 61, 180 (2000)

    Article  ADS  Google Scholar 

  11. S. Alston, Nucl. Instrum. Methods B 43, 19 (1989)

    Article  ADS  Google Scholar 

  12. F. Shojaei Akbarabadi, M.A. Bolorizadeh, J. Phys.: Conf. Ser. 388, 072026 (2012)

    Google Scholar 

  13. H.-K. Kim et al., Phys. Rev. A 85, 022707 (2012)

    Article  ADS  Google Scholar 

  14. K. Taulbjerg, R.O. Brachina, J.H. Macek, Phys. Rev. A 41, 207 (1990)

    Article  ADS  Google Scholar 

  15. D.S.F. Crothers, Relativistic Heavy-Particle Collision Theory (Plenum, New York, 2000)

  16. D.P. Dewangan, B.H. Bransden, J. Phys. B: At. Mol. Opt. Phys. 21, L353 (1988)

    Article  ADS  Google Scholar 

  17. Sh. Azizan, F. Shojaei, R. Fathi, J. Phys. B: At. Mol. Opt. Phys. 49, 085201 (2016)

    Article  ADS  Google Scholar 

  18. I. Mančev, Phys. Rev. A 64, 012708 (2001)

    Article  ADS  Google Scholar 

  19. Dž. Belkić, I. Mančev, Phys. Rev. A 55, 378 (1997)

    Article  ADS  Google Scholar 

  20. Dž. Belkić, I. Mančev, J. Hanssen, Rev. Mod. Phys. 80, 249 (2008)

    Article  ADS  Google Scholar 

  21. L.H. Thomas, Proc. R. Soc. (London) Ser. A 114, 561 (1927)

    Article  ADS  Google Scholar 

  22. R. Shakeshaft, L. Spruch, Phys. Rev. A 29, 605 (1984)

    Article  ADS  Google Scholar 

  23. J.S. Briggs, Nucl. Instrum. Methods B 10/11, 574 (1985)

    Article  Google Scholar 

  24. E. Ghanbari Adivi et al., Phys. Rev. A 38, 022704 (2007)

    Article  Google Scholar 

  25. S. Alston, Phys. Rev. A 54, 2011 (1996)

    Article  ADS  Google Scholar 

  26. E. Ghanbari Adivi, M.A. Bolorizadeh, J. Phys. B: At. Mol. Opt. Phys. 37, 3321 (2004)

    Article  ADS  Google Scholar 

  27. F. Shojaei Akbarabadi, Electron Capture Cross Section in the Collision of Positron and Proton by Atoms and Molecules as a Faddeev Three-Body Collisions, PhD Dissertation, Shahid Bahonar University of Kerman, Department of Physics (2009)

  28. E.T. Rozsályi, Theoretical Study of Charge Transfer in Ion-Molecule Collisions, PhD Thesis, University of Debrecen, School of Physics (2012)

  29. A. Alessandrini, J. Math. Phys. 7, 215 (1966)

    Article  ADS  Google Scholar 

  30. L. Rosenberg, Phys. Rev. 140, B217 (1965)

    Article  ADS  Google Scholar 

  31. A.N. Mitra, J. Gillespie, R. Sugar, N. Panchapakesan, Phys. Rev. 140, B1336 (1965)

    Article  ADS  Google Scholar 

  32. Y. Takahashi, N. Mishima, Progr. Theor. Phys. 34, 498 (1965)

    Article  ADS  Google Scholar 

  33. N. Mishima, Y. Takahashi, Progr. Theor. Phys. 35, 440 (1966)

    Article  ADS  Google Scholar 

  34. J.H. Sloan, Phys. Rev. C 6, 6 (1972)

    Google Scholar 

  35. M.J. Roberts, J. Phys. B 20, 551 (1987)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad A. Bolorizadeh.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safarzade, Z., Akbarabadi, F.S., Fathi, R. et al. Quasi-four-particle first-order Faddeev-Watson-Lovelace terms in proton-helium scattering. Eur. Phys. J. Plus 132, 243 (2017). https://doi.org/10.1140/epjp/i2017-11534-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11534-5

Navigation