Skip to main content

Advertisement

Log in

Effect of degeneracy temperature on drift solitary structures in a nonuniform degenerate plasma

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Linear and nonlinear propagation of quantum drift ion acoustic waves have been studied in a spatially inhomogeneous degenerate quantum plasma taking into account the effect of electron trapping. The linear dispersion relation has been derived in this regard in a 2D quantum magnetoplasma with trapped electrons and a significant amendment in the linear propagation characteristics of the wave under consideration has been observed due to the degeneracy temperature. The drift ion solitary structures have been investigated in 1D and 2D by employing the drift approximation. We obtained the compressive drift solitary structures which are analyzed numerically for the parameters, such as degeneracy temperature, typically found in white dwarfs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P.K. Shukla, S. Ali, Phys. Plasmas 11, 113401 (2004)

    Google Scholar 

  2. W.T. Reach, M.J. Kuchner, T.V. Hippel, A. Burrow, F. Mullally, M. Kilic, D.E. Winget, Astrophys. J. 624, L161 (2004)

    Google Scholar 

  3. M. Opher, L.O. Silva, D.E. Dauger, V.K. Decyk, J.M. Dawson, Phys. Plasmas 8, 2454 (2001)

    Article  ADS  Google Scholar 

  4. A. Markowich, C. Ringhofer, C. Schmeiser, Semiconductor Equations (Springer, Vienna, 1990)

  5. L.K. Ang, T.J. Kwan, Y.Y. Lau, Phys. Rev. Lett. 91, 208303 (2003)

    Article  ADS  Google Scholar 

  6. T.C. Killian, Nature (London) 441, 297 (2006)

    Article  ADS  Google Scholar 

  7. Y.D. Jung, Phys. Plasmas 8, 3842 (2001)

    Article  ADS  Google Scholar 

  8. G. Manfredi, Fields Inst. Commun. 36, 162 (2004)

    Google Scholar 

  9. F. Haas, L.G. Garcia, J. Goedert, G. Manfredi, Phys. Plasmas 10, 3858 (2003)

    Article  ADS  Google Scholar 

  10. A.A. Mamun, P.K. Shukla, EPL 94, 65002 (2011)

    Article  ADS  Google Scholar 

  11. S. Ali, W.M. Moslem, P.K. Shukla, I. Kourakis, Phys. Lett. A 366, 606 (2007)

    Article  ADS  Google Scholar 

  12. A.A. Mamun, P.K. Shukla, D.A. Mendis, J. Plasma Phys. 78, 143 (2011)

    Article  ADS  Google Scholar 

  13. G. Manfredi, Fields Inst. Commun. 46, 263 (2005)

    Google Scholar 

  14. C.L. Gardner, SIAM J. Appl. Math. 54, 409 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  15. C.L. Gardner, C. Ringhofer, Phys. Rev. E 53, 157 (1996)

    Article  ADS  Google Scholar 

  16. G. Manfredi, F. Haas, Phys. Rev. B 64, 075316 (2001)

    Article  ADS  Google Scholar 

  17. P.K. Shukla, B. Eliasson, Phys. Rev. Lett. 96, 245001 (2006)

    Article  ADS  Google Scholar 

  18. F. Haas, Phys. Plasmas 12, 062117 (2005)

    Article  ADS  Google Scholar 

  19. B. Eliasson, P.K. Shukla, J. Plasma Phys. 74, 581 (2008)

    Article  ADS  Google Scholar 

  20. D. Shaikh, P.K. Shukla, Phys. Rev. Lett. 99, 125002 (2007)

    Article  ADS  Google Scholar 

  21. A. Bershadskii, Phys. Lett. A 372, 2741 (2008)

    Article  ADS  Google Scholar 

  22. A.A. Mamun, P.K. Shukla, Phys. Plasmas 17, 104504 (2010)

    Article  ADS  Google Scholar 

  23. A.A. Mamun, P.K. Shukla, EPL 94, 65002 (2010)

    Article  ADS  Google Scholar 

  24. P.K. Shukla, B. Eliasson, Phys. Usp. 53, 51 (2010)

    Article  ADS  Google Scholar 

  25. W. Masood, S. Karim, H.A. Shah, M. Siddiq, Phys. Plasmas 16, 112302 (2009)

    Article  ADS  Google Scholar 

  26. W. Masood, S. Karim, H.A. Shah, M. Siddiq, Phys. Plasmas 16, 042108 (2009)

    Article  ADS  Google Scholar 

  27. S. Tariq, A.M. Mirza, W. Masood, Phys. Plasmas 17, 102705 (2010)

    Article  ADS  Google Scholar 

  28. W. Masood, A.M. Mirza, S. Nargis, J. Plasma Phys. 76, 547 (2010)

    Article  ADS  Google Scholar 

  29. A. Kendl, P.K. Shukla, Phys. Lett. A 375, 3138 (2011)

    Article  ADS  Google Scholar 

  30. I.B. Bernstein, J.M. Green, M.D. Kruskal, Phys. Rev. 108, 546 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  31. A.V. Gurevich, Sov. Phys. JETP 53, 953 (1967)

    Google Scholar 

  32. R.Z. Sagdeev, Review of Plasma Physics, Vol. 4 (Consultants Bureau, New York, 1996)

  33. N.S. Erokhin, N.N. Zolnikova, I.A. Mikhailovskaya, Fiz. Plazmy. 22, 137 (1996)

    Google Scholar 

  34. L. Demeio, Transp. Theory State Phys. 36, 137 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  35. H.A. Shah, M.N.S. Qureshi, N.L. Tsintsadze, Phys. Plasmas 17, 032312 (2010)

    Article  ADS  Google Scholar 

  36. H.A. Shah, W. Masood, M.N.S. Qureshi, N.L. Tsintsadze, Phys. Plasmas 18, 102306 (2011)

    Article  ADS  Google Scholar 

  37. W. Masood, Muzzamal I. Shaukat, Arshad M. Mirza, Astrophys. Space Sci. 352, 621 (2014)

    Article  ADS  Google Scholar 

  38. H.A. Shah, J. Iqbal, N.L. Tsintsadze, W. Masood, M.N.S. Qureshi, Phys. Plasmas 19, 092304 (2012)

    Article  ADS  Google Scholar 

  39. W. Masood, Muzzamal I. Shaukat, H.A. Shah, Arshad M. Mirza, Phys. Plasmas 22, 032305 (2015)

    Article  ADS  Google Scholar 

  40. L.D. Landau, E.M. Liftshitz, Physical Kinetics (Pergamon Press, New York, 1981)

  41. L.D. Landau, E.M. Liftshitz, Statistical Physics, Part I (Butterworth, Oxford, 1980)

  42. H.A. Shah, W. Masood, M.T. Asim, M.N.S. Qureshi, Astrophys. J. 350, 615 (2014)

    Google Scholar 

  43. W. Masood, Phys. Lett. A 373, 1455 (2009)

    Article  ADS  Google Scholar 

  44. H. Rehman, S.A. Khan, W. Masood, M. Siddiq, Phys. Plasmas 15, 124501 (2008)

    Article  ADS  Google Scholar 

  45. M.J. Ablowitz, P.A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering (Cambridge University Press, Cambridge, 1991)

  46. R. Hirota, Phys. Rev. Lett. 27, 1192 (1971)

    Article  ADS  Google Scholar 

  47. M.R. Miura, Backlund Transformation (Springer, Berlin, 1978)

  48. W. Malfliet, Am. J. Phys. 60, 650 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  49. W. Malfliet, J. Comput. Appl. Math. 164, 529 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  50. D. Koester, G. Chanmugam, Rep. Prog. Phys. 53, 837 (1990)

    Article  ADS  Google Scholar 

  51. S.S. Ghosh, G.S. Lakhina, Nonlinear Processes Geophys. 11, 219 (2004)

    Article  ADS  Google Scholar 

  52. A.A. Mamun, P.K. Shukla, J. Geophys. Res. 107, 1135 (2002)

    Article  Google Scholar 

  53. A.A. Mamun, P.K. Shukla, L. Stenflo, Phys. Plasmas 9, 1474 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  54. W. Masood, Arshad M. Mirza, Astrophys. Space Sci. 342, 443 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muzzamal Iqbal Shaukat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaukat, M.I. Effect of degeneracy temperature on drift solitary structures in a nonuniform degenerate plasma. Eur. Phys. J. Plus 132, 210 (2017). https://doi.org/10.1140/epjp/i2017-11489-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11489-5

Navigation