Skip to main content
Log in

Carbon nanotube analysis for an unsteady physiological flow in a non-uniform channel of finite length

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

An analytical investigation is presented to study the unsteady peristaltic transport of nanofluids. Carbon nanotubes analysis is taken into account. The flow geometry is taken as a non-uniform channel of finite length to explore our model for a wide range of biomedical applications. Exact solutions are obtained for the non-dimensional governing equations subject to physically realistic boundary conditions. The effects of carbon nanotubes on effective thermal conductivity, axial velocity, transverse velocity, temperature, and pressure difference distributions along the length of a non-uniform channel with the variation of different flow parameters are discussed with the help of graphical illustrations. An inherent property of peristaltic transport, i.e., trapping is also discussed. We have noticed that MWCnt's have this exceptional quality to increase the axial velocity as well as the transverse velocity of the governing fluids. This model is applicable in drugs delivery system where different geometries of drugs are delivered and it is also applicable to design a microperistaltic pump for transportation of nanofluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.H. Shapiro, M.Y. Jaffrin, S.L. Weinberg, J. Fluid Mech. 37, 799 (1969)

    Article  ADS  Google Scholar 

  2. G. Radhakrishnamacharya, Rheol. Acta 21, 30 (1982)

    Article  Google Scholar 

  3. L.M. Srivastava, J. Biomech. 18, 479 (1985)

    Article  Google Scholar 

  4. C. Pozrikidis, J. Fluid Mech. 180, 515 (1987)

    Article  ADS  Google Scholar 

  5. M. Li, J.G. Brasseur, J. Fluid Mech. 248, 129 (1993)

    Article  ADS  Google Scholar 

  6. X.Q. Wang, A.S. Mujumdar, Int. J. Therm. Sci. 46, 1 (2007)

    Article  Google Scholar 

  7. J. Cremer, I. Segota, C.Y. Yang, M. Arnoldini, J.T. Sauls, Z. Zhang, E. Gutierrez, A. Groisman, T. Hwa, Proc. Natl. Acad. Sci. U.S.A. 113, 11414 (2016)

    Article  ADS  Google Scholar 

  8. M.M. Bhatti, M.A. Abbas, M.M. Rashidi, J. Nanofluids 5, 920 (2016)

    Article  Google Scholar 

  9. M.M. Bhatti, A. Zeeshan, R. Ellahi, Comput. Methods Prog. Bio. 137, 115 (2016)

    Article  Google Scholar 

  10. W. Yu, D.M. France, J.L. Routbort, S.U. Choi, Heat Transf. Eng. 29, 432 (2008)

    Article  ADS  Google Scholar 

  11. S. Kakac, A. Pramuanjaroenkij, Int. J. Heat Mass Transfer 52, 3187 (2009)

    Article  Google Scholar 

  12. S. Özerinç, S. Kakaç, A.G. Yazicioğlu, Microfluid Nanofluid 8, 145 (2010)

    Article  Google Scholar 

  13. N.S. Akbar, A.W. Butt, N.F.M. Noor, Curr. Nanosci. 10, 807 (2014)

    Article  ADS  Google Scholar 

  14. N.S. Akbar, E.N. Maraj, A.W. Butt, Eur. Phys. J. Plus 129, 183 (2014)

    Article  Google Scholar 

  15. R. Abdul Khaliq, R. Kafafy, H.M. Salleh, W.F. Faris, Nanotechnology 23, 455106 (2012)

    Article  Google Scholar 

  16. O. Mahian, A. Kianifar, S.A. Kalogirou, I. Pop, S. Wongwises, Int. J. Heat Mass Transfer 57, 582 (2013)

    Article  Google Scholar 

  17. N.S. Akbar, A.W. Butt, Appl. Math. Comput. 259, 231 (2015)

    MathSciNet  Google Scholar 

  18. N.S. Akbar, A.W. Butt, J. Braz. Soc. Mech. Sci. Eng. (2016) DOI:10.1007/s40430-016-0681-9

  19. R. Ellahi, S.U. Rahman, S. Nadeem, N.S. Akbar, J. Comput. Theor. Nanosci. 11, 1156 (2014)

    Article  Google Scholar 

  20. M.M. Bhatti, R. Ellahi, A. Zeeshan, J. Mol. Liq. 222, 101 (2016)

    Article  Google Scholar 

  21. R. Ellahi, M. Hassan, A. Zeeshan, Int. J. Heat Mass Transfer 81, 449 (2015)

    Article  Google Scholar 

  22. R. Ellahi, M. Hassan, A. Zeeshan, A.A. Khan, Appl. Nanosci. 6, 641 (2016)

    Article  ADS  Google Scholar 

  23. R. Ellahi, A. Zeeshan, M. Hassan, Int. J. Numer. Methods Heat Fluid Flow 26, 2160 (2016)

    Article  Google Scholar 

  24. R. Ellahi, M. Hassan, A. Zeeshan, IEEE Trans. Nanotechnol. 14, 726 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayesha Ayub.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sher Akbar, N., Ayub, A. & Wahid Butt, A. Carbon nanotube analysis for an unsteady physiological flow in a non-uniform channel of finite length. Eur. Phys. J. Plus 132, 177 (2017). https://doi.org/10.1140/epjp/i2017-11451-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11451-7

Navigation