Skip to main content
Log in

Separation of arbitrary spin wave equations in a class of \(\Lambda\)LTB cosmologies

Wave equations in \(\Lambda\)LTB cosmology

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The arbitrary spin field equations that are not separable, contrarily to what happens in the Robertson-Walker and Schwarzschild metrics, are studied in a general comoving spherically symmetric metric. They result to be separable by variable separation in a class of metrics governing the Lemâitre Tolman Bondi cosmological models whose physical radius has a special factorized parametric representation. The result is proved by induction by explicitly considering the spin 1, 3/2, 2 case and then the higher spin values. The procedure is based on the Newman-Penrose formalism, which takes into account the strong analogy with the Robertson-Walker metric case. The existence of a nontrivial Weyl spinor requires a symmetrization of one of the spinor wave equations for spin values greater than 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Buchdahl, J. Phys. A 15, 1 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  2. V. Wunsch, Gen. Relativ. Gravit. 17, 15 (1985)

    Article  ADS  Google Scholar 

  3. R. Illge, Commun. Math. Phys. 158, 433 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  4. J. Dimock, Trans. AMS 269, 133 (1982)

    Article  Google Scholar 

  5. R. Muhlhoff, J. Math. Phys. 52, 022303 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  6. D.R. Brill, J.A. Wheeler, Rev. Mod. Phys. 29, 465 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  7. M. Villalba, U. Percoco, J. Math. Phys. 31, 715 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  8. E. Newman, R. Penrose, J. Math. Phys. 3, 566 (1962)

    Article  ADS  Google Scholar 

  9. A. Zecca, J. Math. Phys. 37, 874 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  10. S. Chandrasekhar, The Mathematical Theory of Black Holes (Oxford University Press, New York, 1983)

  11. A. Zecca A., Int. J. Theor. Phys. 35, 323 (1996)

    Article  Google Scholar 

  12. A. Zecca, Adv. Stud. Theor. Phys. 3, 239 (2009)

    MathSciNet  Google Scholar 

  13. A. Zecca, Adv. Stud. Theor. Phys. 4, 353 (2010)

    MathSciNet  Google Scholar 

  14. A. Zecca, Int. J. Theor. Phys. 45, 2208 (2006)

    Article  Google Scholar 

  15. A. Zecca, Gen. Relativ. Gravit. 32, 1197 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  16. A. Zecca, Aspects of Todays Cosmology (A. Alfonso-Faus Ed. InTech, 2011) ISBN 978-953-307-626-3

  17. A. Zecca, Int. J. Theor. Phys. 51, 4348 (2012)

    Article  Google Scholar 

  18. G. Lemaitre, Gen. Relativ. Gravit. 29, 641 (1997)

    Article  ADS  Google Scholar 

  19. R.C. Tolman, Proc. Natl. Acad. Sci. U.S.A. 20, 169 (1934)

    Article  ADS  Google Scholar 

  20. H. Bondi, Mon. Not. R. Astron. Soc. 107, 410 (1947)

    Article  ADS  Google Scholar 

  21. E.A. Romano, P. Chen, arXiv:1207.5572v2 [astro-ph.CO]

  22. K. Enqvist, Gen. Relativ. Gravit. 40, 451 (2008)

    Article  ADS  Google Scholar 

  23. A. Zecca, Nuovo Cimento B 116, 3412 (2001)

    MathSciNet  Google Scholar 

  24. A. Zecca, Int. J. Theor. Phys. 53, 181 (2014)

    Article  Google Scholar 

  25. A. Krasinski, Inhomogeneous Cosmological Models (Cambridge University Press, Cambridge, 1997)

  26. A. Zecca, Adv. Stud. Theor. Phys. 10, 297 (2016)

    Article  Google Scholar 

  27. A. Zecca, Adv. Stud. Theor. Phys. 9, 315 (2015)

    Article  Google Scholar 

  28. A. Zecca, Int. J. Theor. Phys. 39, 377 (2000)

    Article  MathSciNet  Google Scholar 

  29. A. Zecca, Int. J. Theor. Phys. 32, 615 (1993)

    Article  Google Scholar 

  30. A. Zecca, Nuovo Cimento B 106, 413 (1991)

    Article  ADS  Google Scholar 

  31. A. Zecca, Nuovo Cimento B 125, 191 (2010)

    Google Scholar 

  32. A. Zecca, Int. J. Theor. Phys. 48, 1312 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Zecca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zecca, A. Separation of arbitrary spin wave equations in a class of \(\Lambda\)LTB cosmologies. Eur. Phys. J. Plus 132, 108 (2017). https://doi.org/10.1140/epjp/i2017-11393-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11393-0

Navigation