Skip to main content

Advertisement

Log in

Carbon plants nutrition and global food security

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

To evaluate the effects of carbon nutrition on agricultural productivity, a physiological-process-based crop simulation model, driven by the 1961-1990 monthly climate data from global FAO dataset, was developed and applied to four crops (wheat, maize, rice and soybean --WMRS) which account for 64% of the global caloric consumption of humans. Five different temperatures and CO2 scenarios (current; glacial; pre-industrial; future_1 with 560 ppmv for CO2 and +2 °C for temperature; and future_2 with 800 ppmv for CO2 and +4 °C) were investigated. The relative values of WMRS global productions for past and future scenarios were, respectively, 49% of the present-day scenario for glacial, 82% for pre-industrial, 115% for future_1 and 124% for future_2. A sensitive growth of productivity of future scenarios (respectively to 117% and 134%) was observed if the northward shift of crops was allowed, and a strong increase was obtained without water limitation (from 151% to 157% for the five scenarios) and without biotic and abiotic stresses (from 30% to 40% for WMRS subject to the current scenario). Furthermore since the beginning of the Green Revolution (roughly happened between the '30s and the '50s of the twentieth century) production losses due to sub-optimal levels of CO2 and to biotic and abiotic stresses have been masked by the strong technological innovation trend still ongoing, which, in the last century, led to a strong increase in the global crop production (+400%-600%). These results show the crucial relevance of the future choices of research and development in agriculture (genetics, land reclamation, irrigation, plant protection, and so on) to ensure global food security.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Larcher, Physiological Plant Ecology, 3rd edition (Springer, Berlin, 1995) p. 506

  2. N.T. De Saussure, Recherches Chimiques sur la Végétation (Chez la Veuve Nyon, Librairie, 1804) p. 327

  3. A.V. Barker, D.J. Pilbeam (Editors), Handbook of Plant Nutrition (CRC press, Taylor and Francis Group, 2015) p. 747

  4. T.F. Stocker, D. Qin, G.K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley (Editors), IPCC, Climate Change 2013: The Physical Science Basis, contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, UK and New York, NY, USA, 2013) p. 1535

  5. S. Arrhenius, Worlds in the Making: The Evolution of the Universe (Harper, 1908) p. 258

  6. A. Menozzi, U. Pratologo, Manuale di Chimica Vegetale e Agraria, Vol. I, Chimica vegetale (Hoepli, Milano, 1945) (in Italian)

  7. H.T. Brown, F. Escombe, Philos. Trans. R. Soc. London, Ser. B 193, 223 (1900)

    Article  ADS  Google Scholar 

  8. E. Demoussy, C. R. Acad. Sci. Paris 883 (1904) (in French)

  9. H. Fischer, Pflanzenernährung mittels Kohlensäure, Gartenflora, Heft 14 (1912) (in German)

  10. E. Reinau, Praktischen Kohlensäuredüngung in Gärtnerei und Landwirtschaft (Springer, Berlin, 1927) (in German)

  11. S. Tonzig, E. Marré, Elementi di botanica, Vol. primo, parte seconda (1968) p. 1581 (in Italian)

  12. C. Stanghellini, F.L.K. Kempkes, L. Incrocci, Acta Hortic. 807, 135 (2009)

    Article  Google Scholar 

  13. U. Helldén, C. Tottrup, Glob. Planet. Change 64, 169 (2008)

    Article  ADS  Google Scholar 

  14. S.M. Herrmann, A. Anyambab, C.J. Tucker, Glob. Environ. Change 15, 394 (2005)

    Article  Google Scholar 

  15. S. Sitch et al., Biogeosciences 12, 653 (2015)

    Article  ADS  Google Scholar 

  16. Zeng et al., Nature 515, 394 (2014)

    Article  ADS  Google Scholar 

  17. R. Rafique et al., Remote Sens. 8, 177 (2016)

    Article  MathSciNet  Google Scholar 

  18. J. Wang, C. Wang, N. Chen, Z. Xiong, D. Wolfe, J. Zou, Clim. Change 130, 529 (2015)

    Article  Google Scholar 

  19. L.H. Levine, H. Kasahara, J. Kopka, A. Erban, I. Fehr, F. Kaplan, W. Zhao, R.C. Littell, C. Guy, R. Wheeler, J. Sager, A. Mills, H.G. Levine, Adv. Space Res. 42, 1917 (2008)

    Article  ADS  Google Scholar 

  20. L.H. Allen, V.G. Kakani, J.C. Vu, K.J. Boote, J. Plant. Physiol. 168, 1909 (2011)

    Article  Google Scholar 

  21. M. Wang, B. Xie, Y. Fu, C. Dong, L. Hui, L. Guanghui, H. Liu, Photosynth. Res. 126, 351 (2015)

    Article  Google Scholar 

  22. A.L. Swann, F.M. Hoffman, C.D. Koven, J.T. Randerson, Proc. Natl. Acad. Sci. U.S.A. 113, 10019 (2016)

    Article  ADS  Google Scholar 

  23. J. Diamond, Guns, Germs and Steel. A short history of everybody for the last 13000 years (Norton, 1997) p. 480

  24. G. Federico, Feeding the World: An Economic History of Agriculture, 1800--2000 (Princeton and Oxford: Princeton University Press, 2005) p. 416, ISBN 069112051X

  25. J.A. Burney, S.J. Davis, D.B. Lobell, Proc. Natl. Acad. Sci. 107, 12052 (2010)

    Article  ADS  Google Scholar 

  26. A. Saltini, Agrarian Sciences in the West, Vol. 3, The course of the agrarian revolution (Nuova terra antica, 2015) p. 409

  27. FAO, Dataset FAOSTAT3, available online at http://faostat3.fao.org/home/E (site visited on 12 September 2016)

  28. R.F. Sage, J.R. Coleman, Trends Plant Sci. 6, 18 (2001)

    Article  Google Scholar 

  29. J.L. Araus et al., J. Archaeol. Sci. 30, 681 (2003)

    Article  Google Scholar 

  30. A.A. Lacis, G.A. Schmidt, D. Rind, R.A. Ruedy, Science 330, 356 (2010)

    Article  ADS  Google Scholar 

  31. H.H. Lamb, Climate, Present, Past and Future, Vol. 2, Climatic History and the Future (Methuen & Co Ltd., London, 1977) p. 835

  32. L. Mariani, Applicazioni agrometeorologiche della serie storica di Mantova: possibilità e limiti, in Atti del convegno ``Due secoli di osservazioni meteorologiche a Mantova'', Ersal (2000) pp. 191--201 (in Italian)

  33. E. Le Roy Ladurie, Histoire humaine et comparée du climat, Vol. I, Canicules et glaciers (XIIIe-XVIIIe siècles) (Fayard, 2004)

  34. C.T. de Wit, Photosynthesis: Its Relationship to Overpopulation, in Harvesting the Sun, edited by A. San Pietro, F.A. Green, T.J. Army, (Academic Press, New York, 1967) pp. 315--320

  35. J.L. Capper, R.A. Cady, D.E. Bauman, J. Anim. Sci. 87, 2160 (2009)

    Article  Google Scholar 

  36. S. Parisi, M. Bianco, L. Mariani, Ital. J. Agrometeorol. 2, 15 (2011)

    Google Scholar 

  37. W. Mauser et al., Nat. Commun. 6, 8946 (2015)

    Article  ADS  Google Scholar 

  38. Gray et al., Nature 515, 398 (2014)

    Article  ADS  Google Scholar 

  39. M. Bernardi, Acta Tropica 79, 21 (2001)

    Article  Google Scholar 

  40. R. Leemans, W. Cramer, The IIASA database for mean monthly values of temperature, precipitation and cloudiness on a global terrestrial grid, Research Report RR-91-18, November 1991 (International Institute of Applied Systems Analyses, Laxenburg, 1991) p. 61

  41. R.G. Allen, L.S. Pereira, D. Raes, M. Smith, Crop evapotranspiration---guidelines for computing crop water requirements (Irrigation and Drainage Paper 56) (Food and Agriculture Organization of the United Nations (FAO), Rome, Italy, 1998)

  42. A.K. Singh, V. Goyal, A.K. Mishra, S.S. Parihar, Curr. Sci. 104, 1324 (2013)

    Google Scholar 

  43. H. Boogaard, J. Wolf, I. Supitc, S. Niemeyerd, M. van Ittersum, Field Crops Res. 143, 130 (2013)

    Article  Google Scholar 

  44. F.W.T. Penning de Vries, D.M. Jansen, H.F.M. ten Berge, A. Bakema, Simulation of ecophysiological processes of growth in several annual crops, in Simulat. Monographs, Vol. 29 (Pudoc, Wageningen, 1989)

  45. J. Goudriaan, Agric. For. Meteorol. 38, 251 (1986)

    Article  Google Scholar 

  46. D.C. Reicosky, L.J. Winkelman, J.M. Baker, D.G. Baker, Agric. For. Meteorol. 46, 193 (1989)

    Article  Google Scholar 

  47. J. Doorenbos, W.O. Pruitt, Irrigation and Drainage, Paper No. 24. Rome (FAO, 1978)

  48. University of Illinois, Illinois Agronomy Handbook, 23th edition (2009) available online at the following link: http://extension.cropsciences.illinois.edu/handbook/ (site visited on 10 September 2016)

  49. H. van Keulen, J. Wolf (Editors), Modelling of Agricultural Production, Weather, Soils and Crops (Wageningen, Pudoc, 1986) p. 479

  50. W.E. Easterling, X. Chen, C. Haysl, J.R. Brandle, H. Zhang, Clim. Res. 6, 263 (1996)

    Article  Google Scholar 

  51. E.C. Oerke, J. Agric. Sci. 144, 31 (2006)

    Article  Google Scholar 

  52. D.K. Ray, J.S. Gerber, G.K. MacDonald, P.C. West, Nat. Commun. 6, 5989 (2015)

    Article  ADS  Google Scholar 

  53. C. Müller, J. Elliott, J. Chryssanthacopoulos, A. Arneth, J. Balkovic, P. Ciais, D. Deryng, C. Folberth, M. Glotter, S. Hoek, T. Iizumi, R.C. Izaurralde, C. Jones, N. Khabarov, P. Lawrence, W. Liu, S. Olin, T.A.M. Pugh, D. Ray, A. Reddy, C. Rosenzweig, A.C. Ruane, G. Sakurai, E. Schmid, R. Skalsky, C.X. Song, X. Wang, A. de Wit, H. Yang, Geosci. Model Dev. Discuss. (2016) DOI:10.5194/gmd-2016-207

  54. B. Fagan, Cro-Magnon: How the Ice Age Gave Birth to the First Modern Humans (Bloomsbury Press, 2010) p. 320

  55. United Nations, Revision of World Population Prospects, http://www.un.org/en/development/desa/news/population/2015-report.html (2015) (site visited on 14 September 2016)

  56. FAO, World agriculture towards 2030/2050, The 2012 Revision, ESA Working Paper No. 12--03, http://www.fao.org/docrep/016/ap106e/ap106e.pdf (2012)

  57. C. Wei Jin, S. Ting Du, W. Wei Chen, G. Xin Li, Y. Song Zhang, S. Jian Zheng, Plant Physiol. 150, 272 (2009)

    Article  Google Scholar 

  58. J. Imsande, Plant Physiol. 103, 139 (1998)

    Article  Google Scholar 

  59. S.S. Myers et al., Nature 510, 139 (2014)

    Article  ADS  Google Scholar 

  60. P. Khan, M.Y. Memon, M. Imtiaz, M. Aslam, Pak. J. Bot. 41, 1197 (2009)

    Google Scholar 

  61. A. Rogers, E.A. Ainsworth, A.D.B. Leakey, Plant Physiol. 151, 1009 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Mariani.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mariani, L. Carbon plants nutrition and global food security. Eur. Phys. J. Plus 132, 69 (2017). https://doi.org/10.1140/epjp/i2017-11337-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11337-8

Navigation