Skip to main content
Log in

Obtaining gravitational waves from inspiral binary systems using LIGO data

  • Review
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

An Erratum to this article was published on 28 February 2017

Abstract.

The discovery of the astrophysical events GW150926 and GW151226 has experimentally confirmed the existence of gravitational waves (GW) and has demonstrated the existence of binary stellar-mass black hole systems. This finding marks the beginning of a new era that will reveal unexpected features of our universe. This work presents a basic insight to the fundamental theory of GW emitted by inspiral binary systems and describes the scientific and technological efforts developed to measure these waves using the interferometer-based detector called LIGO. Subsequently, the work presents a comprehensive data analysis methodology based on the matched filter algorithm, which aims to recovery GW signals emitted by inspiral binary systems of astrophysical sources. This algorithm was evaluated with freely available LIGO data containing injected GW waveforms. Results of the experiments performed to assess detection accuracy showed the recovery of 85% of the injected GW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Holst, O. Sarbach, M. Tiglio, M. Vallisneri, Bull. Am. Math. Soc. 53, 513 (2016)

    Article  Google Scholar 

  2. M.C. Miller, Gen. Relativ. Gravit. 48, 95 (2016)

    Article  ADS  Google Scholar 

  3. A. Einstein, Preuss. Akad. Wiss. Berlin, Sitzungsber. 1915, 778 (1915)

    Google Scholar 

  4. A. Einstein, Preuss. Akad. Wiss. Berlin, Sitzungsber. 1915, 844 (1915)

    Google Scholar 

  5. R. Hulse, J. Taylor, Astrophys. J. 195, L51 (1975)

    Article  ADS  Google Scholar 

  6. J. Taylor, J. Weisber, arXiv:astro-ph/0407149

  7. J. Taylor, J. Weisberg, Astrophys. J. 253, 908 (1982)

    Article  ADS  Google Scholar 

  8. T. Damour, J. Taylor, Phys. Rev. D 45, 1840 (1992)

    Article  ADS  Google Scholar 

  9. J. Weber, Phys. Rev. 117, 336 (1960)

    Article  ADS  Google Scholar 

  10. J. Weber, General Relativity and Gravitational Waves (Wiley Interscience, United States, 1961)

  11. B.P. Abbott et al., Rep. Prog. Phys. 72, 076901 (2009)

    Article  ADS  Google Scholar 

  12. T. Accadia et al., J. Instrum. 7, P03012 (2012)

    Article  Google Scholar 

  13. C. Affeldt et al., Class. Quantum Grav. 31, 224002 (2014)

    Article  ADS  Google Scholar 

  14. The LIGO Scientific Collaboration (J. Aasi et al.), Class. Quantum Grav. 32, 074001 (2015)

    Article  ADS  Google Scholar 

  15. B.P. Abbott et al., Phys. Rev. Lett. 116, 061102 (2016)

    Article  ADS  Google Scholar 

  16. B.P. Abbott et al., Phys. Rev. Lett. 116, 241103 (2016)

    Article  ADS  Google Scholar 

  17. B. Allen, W.G. Anderson, P.R. Brady, D.A. Brown, J.D.E. Creighton, Phys. Rev. D 85, 122006 (2012)

    Article  ADS  Google Scholar 

  18. C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (Academic Press, San Francisco, 1973)

  19. S.M. Carroll, Spacetime and Geometry: An Introduction to General Relativity (Addison Wesley, San Francisco, 2004)

  20. S.L. Shapiro, S.A. Teukolsky, Black Holes, White Dwarfs, and Neutron Star: The Physics of Compact Objects (Wiley-Interscience, United States, 1983)

  21. D. Kodwani, arXiv:1605.05399 (2016)

  22. S.E. Gossan et al., Phys. Rev. D 93, 042002 (2016)

    Article  ADS  Google Scholar 

  23. A. Liddle, An Introduction to Modern Cosmology (Wiley, United States, 2015)

  24. K.S. Thorne, in Snowmass'94 Summer Study on Particle and Nuclear Astrophysics and Cosmology, edited by E.W. Kolb, R. Peccei (World Scientific, Singapore, 1995) pp. 160--184

  25. M. Hannam, Gen. Relativ. Gravit. 46, 1767 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  26. L. Blanchet, T. Damour, B.R. Iyer, C.M. Will, A.G. Wiseman, Phys. Rev. Lett. 74, 3515 (1995)

    Article  ADS  Google Scholar 

  27. B. Aylott et al., Class. Quantum Grav. 26, 165008 (2009)

    Article  ADS  Google Scholar 

  28. J.D.E. Creighton, Phys. Rev. D 60, 022001 (1999)

    Article  ADS  Google Scholar 

  29. M. Maggiore, Gravitational Waves, Vol. 1, Theory and Experiments (Oxford University Press, 2007)

  30. B.S. Sathyaprakash, B.F. Schutz, Living Rev. Relativ. 12, 2 (2009)

    Article  ADS  Google Scholar 

  31. E. Poisson, C. Will, Gravity: Newtonian, Post-Newtonian, Relativistic (Cambridge University Press, 2014)

  32. L. Blanchet, B.R. Iyer, C.M. Will, A.G. Wiseman, Class. Quantum Grav. 13, 575 (1996)

    Article  ADS  Google Scholar 

  33. M. Evans, Gen. Relativ. Gravit. 46, 1778 (2014)

    Article  ADS  Google Scholar 

  34. P.R. Saulson, Fundamental of Interferometric Gravitational Wave Detectors (World Scientific, New York, 1994)

  35. R. Forward, Gen. Relativ. Gravit. 2, 149 (1971)

    Article  ADS  Google Scholar 

  36. R. Forward, Phys. Rev. D 17, 379 (1978)

    Article  ADS  Google Scholar 

  37. R. Weiss, Quart. Prog. Rep. Res. Lab. Electron. MIT 105, 54 (1972)

    Google Scholar 

  38. R.W.P. Drever, Optical cavity laser interferometers for gravitational waves detection, in Laser Spectroscopy, Vol. V (Springer, 1981) pp. 33--40

  39. Rochus E. Vogt, Proposal to the National Science Foundation: A Laser Interferometer Gravitational-wave Observatory (LIGO) (1989) https://dcc.ligo.org/public/0065/M890001/003/M890001-03%20edited.pdf

  40. The LIGO Scientific Collaboration (G.M. Harry et al.), Class. Quantum Grav. 27, 084006 (2010)

    Article  ADS  Google Scholar 

  41. B.F. Schutz, Class. Quantum Grav. 28, 125023 (2011)

    Article  ADS  Google Scholar 

  42. K. Cannon, C. Hanna, D. Keppel, Phys. Rev. D 88, 024025 (2013)

    Article  ADS  Google Scholar 

  43. B.P. Abbot et al., Living Rev. Relativ. 19, 1 (2016)

    Article  ADS  Google Scholar 

  44. B.P. Abbott et al., Class. Quantum Grav. 33, 134001 (2016)

    Article  ADS  Google Scholar 

  45. S. Droz, D.J. Knapp, E. Poisson, B.J. Owen, Phys. Rev. D 59, 124016 (1999)

    Article  ADS  Google Scholar 

  46. S.M. Kay, Fundamentals of Statistical Signal Processing, Vol. 2, Detection Theory (Prentice-Hall Inc., New Jersey, 1993)

  47. C.W. Helstrom, in Statistical Theory of Signal Detection, edited by C.W. Helstrom, second edition, International Series of Monographs in Electronics and Instrumentation (Pergamon, 1968) pp. 102--147

  48. B. Allen, Phys. Rev. D 71, 062001 (2005)

    Article  ADS  Google Scholar 

  49. S. Babak, R. Balasubramanian, D. Churches, T. Cokelaer, B.S. Sathyaprakash, Class. Quantum Grav. 23, 5477 (2006)

    Article  ADS  Google Scholar 

  50. T. Cokelaer, Class. Quantum Grav. 24, 6227 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  51. D.A. Brown, Searching for gravitational radiation from binary black hole MACHOs in the galactic halo, PhD Thesis, Wisconsin University, Milwaukee (2004)

  52. S. Babak et al., Phys. Rev. D 87, 024033 (2013)

    Article  ADS  Google Scholar 

  53. S.A. Usman et al., Class. Quantum Grav. 33, 215004 (2016)

    Article  ADS  Google Scholar 

  54. T. Dal Canton et al., Phys. Rev. D 90, 082004 (2014)

    Article  ADS  Google Scholar 

  55. M. Vallisneri, J. Kanner, R. Williams, A. Weinstein, B. Stephens, J. Phys.: Conf. Ser. 610, 012021 (2015)

    Google Scholar 

  56. J. Abadie et al., Phys. Rev. D 82, 102001 (2010)

    Article  ADS  Google Scholar 

  57. J. Abadie et al., Nucl. Instrum. Methods Phys. Res. A 624, 223 (2010)

    Article  ADS  Google Scholar 

  58. The LIGO Scientific Collaboration (S.J. Waldman et al.), Class. Quantum Grav. 23, S653 (2006)

    Article  Google Scholar 

  59. The LIGO Scientific Collaboration, The S5 Data Release (2014) DOI:10.7935/K5WD3XHR

  60. B.P. Abbott et al., Phys. Rev. D 79, 122001 (2009)

    Article  ADS  Google Scholar 

  61. B.P. Abbott et al., Phys. Rev. D 80, 047101 (2009)

    Article  ADS  Google Scholar 

  62. J. Abadie et al., Phys. Rev. D 83, 122005 (2011)

    Article  ADS  Google Scholar 

  63. P.D. Welch, IEEE Trans. Audio Electroacoust. 15, 70 (1967)

    Article  ADS  Google Scholar 

  64. S. Rowan, J. Hough, Living Rev. Relativ. 3, 3 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier M. Antelis.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1140/epjp/i2017-11396-9.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antelis, J.M., Moreno, C. Obtaining gravitational waves from inspiral binary systems using LIGO data. Eur. Phys. J. Plus 132, 10 (2017). https://doi.org/10.1140/epjp/i2017-11283-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11283-5

Navigation