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Abstract. The continuation of series of papers concerning the construction of the energy matrix for complex
atoms is presented. The second-order perturbation theory contributions originating from core polarization
effects in the hyperfine structure are considered. Fifteen new formulae for angular coefficients of core
polarization parameters are given. The complete set of corrections up to the second-order perturbation
theory was taken into account and the accuracy of the wave functions in the intermediate coupling scheme,
on the example of the lanthanum atom, was checked.

1 Introduction

In the first part of our series of publications entitled Construction of the energy matrix for complex atoms, a method
of semi-empirical analysis of complex atoms was introduced in general [1]. In the subsequent works of this series, an
exhaustive description of electrostatic interaction up to second-order perturbation theory, electrostatically correlated
spin-orbit interactions (CSO) and electrostatically correlated hyperfine structure interactions (CHFS) was presented [2–
5]. In each of these publications, the explicit form of analytical formulae, derived in our research group, was given.

The aim of this paper is a description of the effects of configuration interaction on the atomic hyperfine structure,
known as core polarization effects, in the case of nlN , nlNn1l

N1
1 and nlNn1l

N1
1 n2l

N2
2 configurations.

Important differences appear in our approach compared to previous works on the effects of configuration interactions
by other authors [6–19] and can be summarized as follows:

– we replace the description of the configuration interaction with effective operators through direct expressions for
matrix elements;

– we expand the considered configuration base from nlN +nlN−1n1l1 to nlN +nlN−N1n1l
N1
1 +nlN−N1−N2n1l

N1
1 n2l

N2
2 ;

– we include in the consideration the interactions between the configurations under study.

The next section of the current paper contains a short summary of the studies on the hyperfine structure of free
atoms. Section 3 contains the description of a hyperfine structure many-body parametrization method. Section 4
contains the explanation of the symbols used in this work and fifteen explicit formulae for electrostatically correlated
hyperfine interactions. An example of the application of new parameters for the multi-configurations system of the
lanthanum atom is presented in sect. 5.

2 Effects of configuration interaction on atomic hyperfine structure

The hyperfine structure of the atomic spectra is usually interpreted in the framework of the effective operator formalism
proposed by Sandars and Beck [20]. This theory assumes three radial parameters for each open shell and for each kind
of multipole interaction, which should be handled as free adjustable parameters to take into account relativistic and
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configuration interaction (CI) effects. The influence of CI on the hyperfine structure has been studied theoretically,
especially by Judd [21,22].

For the first time, Bauche and Judd [23] showed, in the hyperfine structure analysis of atomic plutonium, the need
to consider the effects of perturbation hyperfine structure through the interaction with the configurations arising from
excitation of one electron belonging to a closed shell n0s0 to an empty shell n′′′s′′′. The authors introduced the name
of the effect as “hfs core-polarization effect”.

In the following years, the extensive research on the configuration interaction effects originated from closed shells
to empty shells excitations, were conducted by Judd [21, 22], Sandars [24], Bauche-Arnould [25, 26], Armstrong [27],
Lindgren and Rosen [28] and Büttgenbach [29]. A short summary of these works was presented in our previous
works [1, 5, 30].

In 1985, Dembczyński [31] proposed a new method of hyperfine structure parametrization, which took into consider-
ation simultaneously one- and two-body interactions in (3d+4s)N+2 configurations system. This approach was applied
successfully to the interpretation of the spectra of iron-group elements [32–35] and, after the generalization, to the
elements with three open electronic shells [36–38]. Detailed discussion on the interpretation of accurate measurements
of hyperfine structure splittings in neutral and singly ionised complex atoms was presented in our papers [39,40].

Another problem that should be considered in the interpretation of hyperfine structure is the inclusion of the off-
diagonal excitation between configurations. For the first time, in the paper from 1977, Bauche and Bauche-Arnould [41]
have shown that the far configuration mixing effect perturbs strongly the off-diagonal spin-dipole hfs matrix elements
between 3dN+14s and 3dN4s2 in the case of (3dN4s2)3F Ti I and (3dN4s2)2D Sc I. Empirically this effect has been
found to be significant only by Himmel [42] in the case of OsI 5d66s2. Usually the hyperfine interaction between
configurations is neglected, because at first order, the only contribution to the magnetic hfs operator is due to the
spin-dipole part. By Hartree-Fock calculations very small values are found for the corresponding radial integrals
(∼ 〈4s|r−3|3d〉).

In 1981 Dembczyński et al. [43], using the atomic beam magnetic resonance detected by the laser-induced resonance
fluorescence method (ABMR-LIRF), found experimental evidence of an extremely strong far configuration mixing
effect on off-diagonal matrix elements between configurations, which can be explained only by taking into account the
two-body core polarization effect, which screens the ordinary one-body core polarization parameter a10

3d. Moreover,
they showed that the influence of the off-diagonal spin-dipole part a12

3d4s, which was discussed by Bauche-Arnoult,
was insignificant. Later, Dembczyński presented the appropriate formulae for off-diagonal matrix elements in the case
(3d + 4s)N+2 configuration system [31].

3 Parametrization of the configuration interaction effects on the hyperfine structure

In 2010 [30] we published a new approach to the hyperfine structure many-body parametrization. In the configuration
system (5d + 6s)N of the lanthanum atom, we conducted an alternative analysis of the second-order contributions,
based on two excitation models: either “open shell - empty shell” or “closed shell - open shell”. As a conclusion of this
work, the question about the selection of the model of excitation was raised.

Computer codes for the analysis of experimental, fine and hyperfine structure, data have been developed in our
research group for many years. This allowed us to conclude that consideration of excitations of one or more electrons
from closed to open shells gives a more precise description of configuration interactions. Our findings can be summarized
as follows:

– We suggest considering the broadest possible configurations basis in the first order of the perturbation theory,
which means systems composed of many Rydberg configurations; therefore, a part of excitations from an open
shell to an empty shells are included directly.

– For atoms with open 3d- or 4f-shell, additionally, the excitation from 3d (or 4f) open shell to empty shells have to
be considered.

– For the configurations up to three open electronic shells, some excitations from a closed shell to an empty shell
should be included; for example in lanthanum configurations n0s25d3, n0s25d26s, n0s25d6s2, n0s25d6s7s, n0s25d6s6d
closed, open and empty shells are different.

The consideration of excitations of the kind “closed n0l0 shell-open nl shell” of the configuration with three open
shells, where the second and third shells contain up to three electrons, requires the coupling of five or more angular
momenta and makes calculating the angular coefficients of appropriate operators more complicated. Thus, one may
expect that a precise definition and development of a sophisticated mathematical formalism provides with sufficient
accuracy of determination of eigenvectors amplitudes describing particular electron states and a complete description
of hyperfine configuration effects.

The theoretical description of all the possible contributions originating from the second-order perturbation theory
to the atomic structure, a detailed description of the new radial parameters and the relationships between them, and
also the results obtained on the basis of experimental data have been fully described in our work from 2010 [30].
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However, the mathematical expressions used in the construction of the energy matrix were not given. Therefore, this
paper contains analytical formulae for electrostatically correlated hyperfine interactions of the configuration space
(nl + n1l1)N+2.

If we consider the many configurations system, the core polarization effect should be taken into account for each type
of configuration. Therefore, the next section contains the explicit formulae describing the core polarization effect for
the electronic systems composed of configurations including up to three open shells (nlN , nlNn1l

N1
1 , nlNn1l

N1
1 n2l

N2
2 ).

4 Explicit formulae for electrostatically correlated hyperfine interactions. Excitation of one
electron from a closed shell into an empty or an open shell

Explanation of symbols used and considerations on the method of the reduced matrix elements calculation have already
been presented in earlier works, but for the reader’s convenience, we present them again.

4.1 Explanation of used symbols

In all the formulae given below, symbol Gt denotes a particular term of the Coulomb interaction represented by
irreducible tensors of rank t:

∑
i>j rt

</rt+1
> (Ct

i · Ct
j), where r< and r> indicate the distances from the nucleus to the

closer and more distant electron, respectively. Summation over t is omitted. The expressions describing Gt element
contain coupling schemes used for the derivation of the formula.

For nj-coefficients the generally accepted notations were used.
The antisymmetric states for N equivalent electrons, allowed by the Pauli principle, were constructed from a linear

combination of products of parent states with (N−1) electrons using Racah’s coefficients of fractional parentage [44,45].
In the one-electron fractional parentage coefficient (nlNα0S0L0{|nlN−1ᾱS̄L̄), α0S0L0 denote the states of a group nlN

of equivalent electrons and α0 is an additional quantum number introduced to distinguish terms with identical values of
S0L0. In the same way, ᾱS̄L̄ denote the states of nlN−1 equivalent electrons. For two-electron coefficients, introduced
for the first time by Donlan [46] (nlNα0S0L0{|nlN−2ᾱS̄L̄, nl2α̂ŜL̂), α0S0L0, ᾱS̄L̄ and α̂ŜL̂ indicate the states of a
group nlN , nlN−2 and nl2 of equivalent electrons, respectively.

The expression [x, y] represents (2x + 1)(2y + 1). The reduced matrix elements, Ct and Ut, represent

(l1‖Ct‖l2) = (−1)l1 [(2l1 + 1)(2l2 + 1)]1/2

(
l1 t l2

0 0 0

)

(1)

〈
nlNα0S0L0

∥
∥Ut

∥
∥nlNα′

0S
′
0L

′
0

〉
= δ(S0, S

′
0) N (−1)L0+l+t [L0, L

′
0]

1/2

×
∑

ᾱS̄L̄

(−1)L̄
(
nlNα0S0L0{|nlN−1ᾱS̄L̄

) (
nlNα′

0S
′
0L

′
0{|nlN−1ᾱS̄L̄

)
{

l l t

L0 L′
0 L̄

}

. (2)

4.2 Removal of the J-dependence and the method of the reduced matrix elements calculation

In the current paper we concentrate on the excitation of one electron from a closed shell n0s into an open shell
ns or into an empty shell n′′′s for the extended model configuration space. The formulae describing the intra- and
interconfiguration electrostatically correlated hyperfine interaction are given in the form of the reduced matrix elements
using the Wigner-Eckart theorem.

In the case of CHFS for magnetic dipole interactions K = 1 the following relations hold:

〈Ψ(ΓαSLJM)|CHFS|Ψ ′(Γ ′α′S′L′J ′M ′)〉

= −
∑

Ψ ′′ �=Ψ,Ψ ′

[
〈Ψ |G|Ψ ′′〉 × 〈Ψ ′′|tκk|Ψ ′〉 + 〈Ψ |tκk|Ψ ′′〉 × 〈Ψ ′′|G|Ψ ′〉

]
/ΔE

= δ(M,M ′)δ(J, J ′)

√
3(2J + 1)
J(J + 1)

⎧
⎨

⎩

S S′ κ

L L′ k

J J 1

⎫
⎬

⎭
〈Ψ(ΓαSL)‖CHFS‖Ψ ′(Γ ′α′S′L′)〉

= δ(M,M ′)δ(J, J ′)

√
3(2J + 1)
J(J + 1)

⎧
⎨

⎩

S S′ κ

L L′ k

J J 1

⎫
⎬

⎭
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×
[

−
∑

ψ′′

〈
n0l

4l0+2
0

1S, ΓαSL;SL |G|n0l
4l0+1
0

2l0, Γ
′′α′′S′′L′′;SL

〉

×
〈
n0l

4l0+1
0

2l0, Γ
′′α′′S′′L′′;SL

∥
∥tκk

∥
∥n0l

4l0+2
0

1S, Γ ′α′S′L′;S′L′
〉

−
∑

ψ′′

〈
n0l

4l0+1
0

2l0, Γ
′′α′′S′′L′′;SL

∥
∥tκk

∥
∥n0l

4l0+2
0

1S, Γ ′α′S′L′;S′L′
〉

×
〈
n0l

4l0+2
0

1S, Γ ′α′S′L′;S′L′ |G|n0l
4l0+2
0

1S, Γ ′α′S′L′
〉
]

= δ(M,M ′) δ(J, J ′)

√
3(2J + 1)
J(J + 1)

⎧
⎨

⎩

S S′ κ

L L′ k

J J 1

⎫
⎬

⎭
tκk
coeff (n0l0, nili)

× (angular part)
∑

n0l0

Rt (nilin0l0, nilin
′
il
′
i) 〈n0l0|r−3|nili〉/ΔE, (3)

where Γ , Γ ′ designate configurations being studied, ΔE is the (positive) energy difference between the relevant closed-
and open- or empty-shell orbitals, κk = 10 and tκk

coeff (n0l0, nili) is the angular part of the hfs operator tκk:

〈
n0l0

∥
∥tκk

∥
∥nili

〉
= tκk

coeff (n0l0, nili) 〈n0l0|r−3|nili〉κk. (4)

The radial integrals of the hfs operator tκk corresponding to κk = 10 is defined as

〈
n0l0

∥
∥t10

∥
∥nili

〉
=
〈
n0l0

∥
∥ŝir

−3
∥
∥nili

〉
= δ(l0, li)

√
3/2

√
2l0 + 1〈n0l0|r−3|nil0〉10. (5)

The formulae (reduced matrix elements) describing the effects of ns core polarization are presented below.

4.3 nlN configuration

The states ψ and ψ′ for the nlN configuration are defined as follows:

ψ = n0s
2 1S, nlNαSL;αSL,

ψ′ = n0s
2 1S, nlNα′S′L′;α′S′L′.

For the excitation of one electron from a closed n0s2 shell into an empty n′′′s shell the perturbing virtual states are
defined as ψ′′ = n0s

2S, (nlNα′′
1S′′

1 L′′
1 , n′′′s)S′′L′′;S′′′L′′′.

To calculate the matrix elements the formula (29) from the paper [5] should be used.

4.4 nlNn1l
N1

1 configuration

The states ψ and ψ′ for the nlNn1l
N1
1 configuration are defined as follows:

ψ = n0s
2 1S, (nlNα1S1L1, n1l

N1
1 α2S2L2)SL;SL,

ψ′ = n0s
2 1S, (nlNα′

1S
′
1L

′
1, n1l

N1
1 α′

2S
′
2L

′
2)S

′L′;S′L′.

If N1 = 1 and n1l1-electron is n1s-electron the excitation from a closed n0s2 shell into an open n1s shell should be
considered.

In this case the perturbing virtual states are defined as

ψ′′ = (n0s
2S, nlNα′′

1S′′
1 L′′

1)S′′L′′, n1s
2 1S;S′′L′′.

To calculate the matrix elements describing this interaction formula (32) from the paper [5] should be used.
In other cases, use the formulas presented in the following subsubsection.
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4.4.1 Excitation of one electron from a closed n0s2 shell to an empty n′′′s shell

In this case the perturbing virtual states are defined as
ψ′′ = (n0s n′′′s)2σ+1S, (nlNα′′

1S′′
1 L′′

1 , n1l
N1
1 α′′

2S′′
2 L′′

2)S′′L′′;S′′′L′′′.
The first type of electrostatic integrals:

−
∑

ψ′′ �=ψ,ψ′

[
〈ψ|G|ψ′′〉 × 〈ψ′′‖t10‖ψ′〉 + 〈ψ‖t10‖ψ′′〉 × 〈ψ′′|G|ψ′〉

]
/ΔE

= N δ(α2S2L2, α
′′
2S′′

2 L′′
2) δ(α′′

2S′′
2 L′′

2 , α′
2S

′
2L

′
2) δ(σ, 1) δ(L,L′) δ(L1, L

′
1) δ(t, l) [S′

1, S1, S
′, S, L]1/2

×
[

δ(S′′L′′, S′L′) δ(α′′
1S′′

1 L′′
1 , α′

1S
′
1L

′
1)
{

S2 S S1

1 S′
1 S′

}∑

ᾱS̄L̄

(
nlNα1S1L1{|nlN−1ᾱS̄L̄

)

×
(
nlNα′

1S
′
1L

′
1{|nlN−1ᾱS̄L̄

)
(−1)3S+2S′+3S′

1+3S1+S2+S̄+1/2

{
1/2 1/2 1
S1 S′

1 S̄

}

+ δ(S′′L′′, SL) δ(α′′
1S′′

1 L′′
1 , α1S1L1)

{
S2 S′ S′

1

1 S1 S

} ∑

ᾱ′S̄′L̄′

(
nlNα1S1L1{|nlN−1ᾱ′S̄′L̄′

)

×
(
nlNα′

1S
′
1L

′
1{|nlN−1ᾱ′S̄′L̄′

)
(−1)S+3S′

1+3S1+S2+S̄+1/2

{
1/2 1/2 1
S′

1 S1 S̄′

}]

×
(

l l 0
0 0 0

)2 ∑

n0s

Rl(n0s nl, nl n′′′s)〈n0s|r−3|n′′′s〉10/ΔE. (6)

The second type of electrostatic integrals:

−
∑

ψ′′ �=ψ,ψ′

[
〈ψ|G|ψ′′〉 × 〈ψ′′‖t10‖ψ′〉 + 〈ψ‖t10‖ψ′′〉 × 〈ψ′′|G|ψ′〉

]
/ΔE

= N1 δ(α1S1L1, α
′′
1S′′

1 L′′
1) δ(α′′

1S′′
1 L′′

1 , α′
1S

′
1L

′
1) δ(σ, 1) δ(L,L′) δ(L2, L

′
2) δ(t, l1) [S′

2, S2, S
′, S, L]1/2

×
[

δ(S′′L′′, S′L′) δ(α′′
2S′′

2 L′′
2 , α′

2S
′
2L

′
2)
{

S1 S S2

1 S′
2 S′

}∑

ᾱS̄L̄

(
n1l

N1
1 α2S2L2{|n1l

N1−1
1 ᾱS̄L̄

)

×
(
n1l

N1
1 α′

2S
′
2L

′
2{|n1l

N1−1
1 ᾱS̄L̄

)
(−1)3S+2S′+3S′

2+3S2+S1+S̄+1/2

{
1/2 1/2 1
S2 S′

2 S̄

}

+ δ(S′′L′′, SL) δ(α′′
2S′′

2 L′′
2 , α2S2L2)

{
S1 S′ S′

2

1 S2 S

} ∑

ᾱ′S̄′L̄′

(
n1l

N1
1 α2S2L2{|n1l

N1−1
1 ᾱ′S̄′L̄′

)

×
(
n1l

N1
1 α′

2S
′
2L

′
2{|n1l

N1−1
1 ᾱ′S̄′L̄′

)
(−1)S+3S′

2+3S2+S1+S̄+1/2

{
1/2 1/2 1
S′

2 S2 S̄′

}]

×
(

l1 l1 0
0 0 0

)2 ∑

n0s

Rl1(n0s n1l1, n1l1 n′′′s)〈n0s|r−3|n′′′s〉10/ΔE. (7)

4.5 nlNn1s n2s configuration

The states ψ and ψ′ for the nlNn1l
N1
1 n2l2 configuration are defined as follows:

ψ = (n0s
2 1S, nlNα1S1L1)S1L1, (n1sn2s)S2L2;SL,

ψ′ = (n0s
2 1S, nlNα′

1S
′
1L

′
1)S

′
1L

′
1, (n1sn2s)S′

2L
′
2;S

′L′.
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4.5.1 Excitation of one electron from a open n1s shell into an open n2s shell

In this case the perturbing virtual states are defined as ψ′′ = n0s
2 1S, nlNα′′

1S′′
1 L′′

1 , n2s
2 1S;S′′

1 L′′
1 .

−
∑

ψ′′ �=ψ,ψ′

[
〈ψ|G|ψ′′〉 × 〈ψ′′‖t10‖ψ′〉 + 〈ψ‖t10‖ψ′′〉 × 〈ψ′′|G|ψ′〉

]
/ΔE

=
√

2 N√
3
√

2l + 1
δ(t, 0)

[

δ(SL, S1L1) δ(S′′
1 L′′

1 , SL) δ(α′
1S

′
1L

′
1, αSL) δ(S2, 0) δ(L2, 0) δ(S′

2, 1) δ(L′
2, 0)

× (−1)3S+S′+L+L′
[S′, L′]1/2

∑

ᾱS̄L̄

(
nlNαSL{|nlN−1ᾱS̄L̄

) (
nlNα′′

1S′′
1 L′′

1{|nlN−1ᾱS̄L̄
)

+ δ(S′L′, S′′
1 L′′

1) δ(S′L′, S′
1L

′
1) δ(α1S1L1, α

′S′L′) δ(S′
2, 0) δ(L′

2, 0) δ(S2, 1) δ(L2, 0) (−1)2S+2S′

× [S,L]1/2
∑

ᾱ′S̄′L̄′

(
nlNα′S′L′{|nlN−1ᾱ′S̄′L̄′

) (
nlNα′′

1S′′
1 L′′

1{|nlN−1ᾱ′S̄′L̄′
)
]

× (l‖C0‖l)(0‖C0‖0)R0 (nln1s, nln2s) 〈n1s|r−3|n2s〉10/ΔE

+
N√

3(2l + 1)
δ(l, t)

[

δ(S′′
1 L′′

1 , SL) δ(α′
1S

′
1L

′
1, αSL) δ(L2, 0) δ(L1, L) δ(S′

2, 1) δ(L′
2, 0) [S′, L′, S1, S2]1/2

×
∑

ᾱS̄L̄

(
nlNαSL{|nlN−1ᾱS̄L̄

) (
nlNα′′

1S′′
1 L′′

1{|nlN−1ᾱS̄L̄
)
(−1)3S̄+2S+S′+3S2+L+L′+l+1/2

{
S̄ 1/2 S1

S2 S 1/2

}

+ δ(S′′
1 L′′

1 , S′L′) δ(α1S1L1, α
′S′L′) δ(L′

2, 0) δ(L′
1, L

′) δ(S2, 1) δ(L2, 0) [S,L, S′
1, S

′
2]

1/2

×
∑

ᾱ′S̄′L̄′

(
nlNα′S′L′{|nlN−1ᾱ′S̄′L̄′

) (
nlNα′′

1S′′
1 L′′

1{|nlN−1ᾱ′S̄′L̄′
)
(−1)3S̄′+2S+S′+3S′

2+l+1/2

{
S̄′ 1/2 S′

1

S′
2 S′ 1/2

}]

× (l‖Cl‖0)(0‖Cl‖l)Rl (nln1s, n2snl) 〈n1s|r−3|n2s〉10/ΔE. (8)

4.6 nlNn1l
N1

1 n2l2 configuration

The states ψ and ψ′ for the nlNn1l
N1
1 n2l2 configuration are defined as follows:

ψ = (n0s
2 1S, nlNα1S1L1)S1L1, (n1l

N1
1 α2S2L2, n2l2)S3L3;SL,

ψ′ = (n0s
2 1S, nlNα′

1S
′
1L

′
1)S

′
1L

′
1, (n1l

N1
1 α′

2S
′
2L

′
2, n2l2)S′

3L
′
3;S

′L′.

If N1 = 1 and n1l1-electron is n1s-electron the excitation from a closed n0s2 shell into an open n1s shell should be
considered.

In this case the perturbing virtual states are defined as

ψ′′ = (n0s
2S, nlNα′′

1S′′
1 L′′

1)S′′L′′, (n1s
2 1S, n2l2)S′′

3 L′′
3 ;S′′′L′′′.

To calculate the matrix elements describing this interaction formulae (37), (38) and (39) from the paper [5] should be
used.

If n2l2-electron is n2s-electron the excitation from a closed n0s2 shell into an open n2s shell should be considered.
In this case the perturbing virtual states are defined as

ψ′′ = (n0s
2S, nlNα′′

1S′′
1 L′′

1)S′′L′′, (n1l
N1
1 α′′

2S′′
2 L′′

2 , n2s
2 1S)S′′

3 L′′
3 ;S′′′L′′′.

To calculate the matrix elements describing this interaction formulae (40), (41) and (42) from the paper [5] should be
used.

In other cases, use the formulas presented in the following paragraph.
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4.6.1 Excitation of one electron from a closed n0s2 shell to an empty n′′′s shell

In this case the perturbing virtual states are defined as
ψ′′ = ((n0s n′′′s)2σ+1S, nlNα′′

1S′′
1 L′′

1)S′′L′′, (n1l
N1
1 α′′

2S′′
2 L′′

2 , n2l2) S′′
3 L′′

3 ;S′′′L′′′.
The first type of electrostatic integrals:

−
∑

ψ′′ �=ψ,ψ′

[
〈ψ|G|ψ′′〉 × 〈ψ′′‖t10‖ψ′〉 + 〈ψ‖t10‖ψ′′〉 × 〈ψ′′|G|ψ′〉

]
/ΔE

= N δ(α2S2L2, α
′′
2S′′

2 L′′
2) δ(α′′

2S′′
2 L′′

2 , α′
2S

′
2L

′
2) δ(S3L3, S

′′
3 L′′

3) δ(S′′
3 L′′

3 , S′
3L

′
3) δ(σ, 1) δ(L,L′) δ(L1, L

′
1) δ(t, l)

× [S,L, S′]1/2

[

δ(S′′L′′, S1L1) δ(L1, L
′′
1) δ(α′′

1S′′
1 L′′

1 , α′
1S

′
1L

′
1) [S′′

1 , S′′]1/2

{
S S′ 1
S′

1 S′′ S′
3

}

×
∑

ᾱS̄L̄

(
nlNα1S1L1{|nlN−1ᾱS̄L̄

) (
nlNα′

1S
′
1L

′
1{|nlN−1ᾱS̄L̄

)
(−1)S′+2S′

1+S′
3+2S′′+3S̄+3/2

{
1/2 1/2 1
S′′

1 S1 S̄

}

+ δ(S′′L′′, S′
1L

′
1) δ(α′′

1S′′
1 L′′

1 , α1S1L1) δ(L′
1, L

′′
1) [S′′

1 , S′′]1/2

{
S S′ 1
S′′ S1 S3

} ∑

ᾱ′S̄′L̄′

(
nlNα1S1L1{|nlN−1ᾱ′S̄′L̄′

)

×
(
nlNα′

1S
′
1L

′
1{|nlN−1ᾱ′S̄′L̄′

)
(−1)S′+2S1+2S′′+S3+3S̄+3/2

{
1/2 1/2 1
S′′

1 S′
1 S̄′

}]

×
(

l l 0
0 0 0

)2 ∑

n0s

Rl(n0s nl, nl n′′′s)〈n0s|r−3|n′′′s〉10/ΔE. (9)

The second type of electrostatic integrals:

−
∑

ψ′′ �=ψ,ψ′

[
〈ψ|G|ψ′′〉 × 〈ψ′′‖t10‖ψ′〉 + 〈ψ‖t10‖ψ′′〉 × 〈ψ′′|G|ψ′〉

]
/ΔE

= N1 δ(α1S1L1, α
′′
1S′′

1 L′′
1) δ(α′′

1S′′
1 L′′

1 , α′
1S

′
1L

′
1) δ(σ, 1) δ(L,L′) δ(L2, L

′
2) δ(L3, L

′
3) δ(t, l1) [S2, S

′
2, S3, S

′
3, S

′, S, L]1/2

×
[

δ(S′′
3 L′′

3 , S′
3L

′
3) δ(α′′

2S′′
2 L′′

2 , α′
2S

′
2L

′
2) δ(L′′, L′

1) [S′′]
{

S S′ 1
S′

1 S′′ S′
3

}{
S′

2 S2 1
S3 S′

3 1/2

}{
S′′ S′

3 S

S3 S1 1

}

×
∑

ᾱS̄L̄

(
n1l

N1
1 α2S2L2{|n1l

N1−1
1 ᾱS̄L̄

)(
n1l

N1
1 α′

2S
′
2L

′
2{|n1l

N1−1
1 ᾱS̄L̄

)
(−1)S+S′+3S3+2S′

3+2S2+3S′
1+3S′′+3S̄

{
1/2 1/2 1
S2 S′

2 S̄

}

+ δ(S′′
3 L′′

3 , S3L3) δ(α′′
2S′′

2 L′′
2 , α2S2L2) δ(L′′, L1) [S′′]

{
S S′ 1
S′′ S1 S3

}{
S′

2 S2 1
S3 S′

3 1/2

}{
S′′ S3 S′

S′
3 S′

1 1

}

×
∑

ᾱ′S̄′L̄′

(
n1l

N1
1 α2S2L2{|n1l

N1−1
1 ᾱ′S̄′L̄′

)(
n1l

N1
1 α′

2S
′
2L

′
2{|n1l

N1−1
1 ᾱ′S̄′L̄′

)
(−1)2S′+2S′

2+2S3+3S′
3+3S1+3S′′+3S̄

×
{

1/2 1/2 1
S′

2 S2 S̄′

}](
l1 l1 0
0 0 0

)2 ∑

n0s

Rl1(n0s n1l1, n1l1 n′′′s)〈n0s|r−3|n′′′s〉10/ΔE. (10)

The third type of electrostatic integrals:

−
∑

ψ′′ �=ψ,ψ′

[
〈ψ|G|ψ′′〉 × 〈ψ′′‖t10‖ψ′〉 + 〈ψ‖t10‖ψ′′〉 × 〈ψ′′|G|ψ′〉

]
/ΔE

= δ(α1S1L1, α
′′
1S′′

1 L′′
1) δ(α′′

1S′′
1 L′′

1 , α′
1S

′
1L

′
1) δ(α2S2L2, α

′′
2S′′

2 L′′
2) δ(α′′

2S′′
2 L′′

2 , α′
2S

′
2L

′
2) δ(L3, L

′
3) δ(L′′, L′′

1)

× δ(σ, 1) δ(L,L′) δ(t, l2) [S3, S
′
3, S, L, S′]1/2

×
[

δ(S′′
3 L′′

3 , S′
3L

′
3) δ(L′

1, L
′′) [S′′]

{
S′′ S′

3 S

S3 S1 1

}{
S S′ 1
S′

1 S′′ S′
3

}{
1/2 1/2 1
S3 S′

3 S2

}

(−1)S2+S+S′+3S′
1+2S3+S′

3+3S′′+1/2

+ δ(S′′
3 L′′

3 , S3L3) δ(L1, L
′′) [S′′]

{
S′′ S3 S′

S′
3 S′

1 1

}{
S S′ 1
S′′ S1 S3

}{
1/2 1/2 1
S3 S′

3 S′
2

}

(−1)S′
2+2S′+3S1+S3+2S′

3+3S′′+1/2

]

×
(

l2 l2 0
0 0 0

)2 ∑

n0s

Rl2(n0s n2l2, n2l2 n′′′s)〈n0s|r−3|n′′′s〉10/ΔE. (11)
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4.7 Interconfiguration interaction

4.7.1 Configuration interaction nlNn1l1 ↔ nlN−1n2s n1l1

The states ψ for the nlNn1l1 configuration and ψ′ for the nlN−1n2s n1l1 configuration are defined as follows:

ψ = (n0s
2 1S, nlNα1S1L1)α1S1L1, n1l1;SL,

ψ′ = (n0s
2 1S, nlN−1α′

1S
′
1L

′
1)α

′
1S

′
1L

′
1, (n2s n1l1)S′

3L
′
3;S

′L′.

For the excitation of an electron from a closed n0s2 shell into an empty n2s shell the perturbing virtual states are
defined as ψ′′ = (n0s

2S, nlN α′′
1S′′

1 L′′
1)S′′L′′, (n1l1 n2s)S′′

3 L′′
3 ;S′′′L′′′.

In this case the first term of the sum below is equal to zero due to hyperfine interaction:

−
∑

ψ′′ �=ψ,ψ′

[
〈ψ|G|ψ′′〉 × 〈ψ′′‖t10‖ψ′〉 + 〈ψ‖t10‖ψ′′〉 × 〈ψ′′|G|ψ′〉

]
/ΔE. (12)

The second component is as follows:

−
∑

ψ′′

〈
ψ‖t10‖ψ′′〉 × 〈ψ′′|G|ψ′〉

/
ΔE

= −
∑

ψ′′

√
N δ(α1S1L1, α

′′
1S′′

1 L′′
1) δ(L,L′) δ(L1, L

′′) δ(S′
3L

′
3, S

′′
3 L′′

3) δ(S′
1L

′
1, S

′′L′′) δ(L′
1, L

′′
1) δ(l, t)

× [S,L, S′, S1, S
′
3]

1/2

[L′
1]1/2

(−1)3S′
1+3S1+S+S′+3S′

3+L′
3+L′

1+l1+0.5

⎧
⎨

⎩

1/2 1/2 1
1/2 S1 S

S′
3 S′

1 S′

⎫
⎬

⎭

∑

ᾱS̄L̄

δ(S̄, S′
1)
(
nlNα1S1L1{|nlN−1ᾱS̄L̄

)

×
〈
nlN−1ᾱS̄L̄

∥
∥Ul

∥
∥nlN−1α′

1S
′
1L

′
1

〉
(−1)L̄(2l + 1)

(
l l l

0 0 0

)(
l l 0
0 0 0

)∑

n0s

Rl(n0s nl, nlnl)〈n0s|r−3|n2s〉10/ΔE. (13)

4.7.2 Configuration interaction nlNn2s n1l1 ↔ nlN−1n2s
2n1l1

The states ψ for the nlNn2s n1l1 configuration and ψ′ for the nlN−1 n2s
2n1l1 configuration are defined as follows:

ψ = (n0s
2 1S, nlNα1S1L1)α1S1L1, (n2s n1l1)S3L3;SL,

ψ′ = (n0s
2 1S, nlN−1α′

1S
′
1L

′
1)α

′
1S

′
1L

′
1, (n2s

2 1S, n1l1)S′
3L

′
3;S

′L′.

For the excitation of an electron from a closed n0s2 shell into an open n2s shell the perturbing virtual states are defined
as ψ′′ = (n0s

2S, nlN α′′
1S′′

1 L′′
1)S′′L′′, (n2s

2 1S, n1l1)S′′
3 L′′

3 ;S′′′L′′′.
In this case the first term of the sum below is equal to zero due to hyperfine interaction:

−
∑

ψ′′ �=ψ,ψ′

[
〈ψ|G|ψ′′〉 × 〈ψ′′‖t10‖ψ′〉 + 〈ψ‖t10‖ψ′′〉 × 〈ψ′′|G|ψ′〉

]
/ΔE. (14)

The second component is as follows:

−
∑

ψ′′

〈
ψ‖t10‖ψ′′〉 × 〈ψ′′|G|ψ′〉

/
ΔE

= −
∑

ψ′′

√
N δ(α1S1L1, α

′′
1S′′

1 L′′
1) δ(L,L′) δ(L1, L

′′) δ(L3, l1)δ(S′
3L

′
3, S

′′
3 L′′

3) δ(S′
1L

′
1, S

′′L′′) δ(L′
1, L

′′
1) δ(l, t)

× [S,L, S′, S1, S3]1/2

[L′
1]1/2

(−1)2S′
1+S3+2S′+L′

1+1

⎧
⎨

⎩

1/2 1/2 1
1/2 S′

1 S′

S3 S1 S

⎫
⎬

⎭

∑

ᾱS̄L̄

δ(S̄, S′
1)
(
nlNα1S1L1{|nlN−1ᾱS̄L̄

)

×
〈
nlN−1ᾱS̄L̄

∥
∥Ul

∥
∥nlN−1α′

1S
′
1L

′
1

〉
(−1)L̄(2l + 1)

(
l l l

0 0 0

)(
l l 0
0 0 0

)∑

n0s

Rl(n0s nl, nlnl)〈n0s|r−3|n2s〉10/ΔE. (15)
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4.7.3 Configuration interaction nlNn1l
2
1 ↔ nlN−1n2s n1l

2
1

The states ψ for the nlNn1l
2
1 configuration and ψ′ for the nlN−1n2s n1l

2
1 configuration are defined as follows:

ψ = (n0s
2 1S, nlNα1S1L1)α1S1L1, n1l

2
1α2S2L2;SL,

ψ′ = (n0s
2 1S, (nlN−1α′

1S
′
1L

′
1, n2s) S′

2L
′
2) S′

2L
′
2, n1l

2
1α

′
3S

′
3L

′
3;S

′L′.

For the excitation of an electron from a closed n0s2 shell into an empty n2s shell the perturbing virtual states are
defined as ψ′′ = (n0s

2S, nlNα′′
1S′′

1 L′′
1)S′′L′′, (n1l

2
1 α′′

2S′′
2 L′′

2 , n2s) S′′
3 L′′

3 ;S′′′L′′′.
In this case the first term of the sum below is equal to zero due to hyperfine interaction:

−
∑

ψ′′ �=ψ,ψ′

[
〈ψ|G|ψ′′〉 × 〈ψ′′‖t10‖ψ′〉 + 〈ψ‖t10‖ψ′′〉 × 〈ψ′′|G|ψ′〉

]
/ΔE. (16)

The second component is as follows:

−
∑

ψ′′

〈
ψ‖t10‖ψ′′〉 × 〈ψ′′|G|ψ′〉

/
ΔE

= −
∑

ψ′′

√
N δ(α1S1L1, α

′′
1S′′

1 L′′
1) δ(α2S2L2, α

′′
2S′′

2 L′′
2) δ(L,L′) δ(L1, L

′′) δ(L′′
2 , L′′

3)

× [S,L, S′, S′′, S′′
3 ]1/2 (−1)3S′′+3S1+S+S′+1.5

⎧
⎨

⎩

1/2 1/2 1
S2 S1 S

S′′
3 S′′ S′

⎫
⎬

⎭

×
[

δ(α′
3S

′
3L

′
3, α

′′
2S′′

2 L′′
2) δ(L′

1, L
′′
1) δ(S′

1L
′
1, S

′′L′′) δ(L′
2, L

′′) δ(L′′
2 , L′′

3) δ(l, t)
[S′

2, S
′′
3 , S′′

1 ]1/2

[S′
1, L

′
1]1/2

{
S′′

2 S′ S′
2

S′′ 1/2 S′′
3

}

× (−1)S′′+S′+3S′′
3 +L′′

3 +L′′
1 +L′′

2
∑

ᾱS̄L̄

δ(S̄, S′
1)(−1)L̄

(
nlNα′′

1S′′
1 L′′

1{|nlN−1ᾱS̄L̄
) 〈

nlN−1ᾱS̄L̄
∥
∥Ul

∥
∥nlN−1α′

1S
′
1L

′
1

〉

× (2l + 1)
(

l l l

0 0 0

)(
l l 0
0 0 0

)∑

n0s

Rl(n0s nl, nlnl)〈n0s|r−3|n2s〉10/ΔE

+ 2 δ(S′
1, S

′′) δ(S′
3, S

′′
2 ) δ(L′′

1 , L′′) δ(L′
1, L

′
2) δ(L′′

2 , L′′
3) δ(t, l)

(
nlNα′′

1S′′
1 L′′

1{|nlN−1α′
1S

′
1L

′
1

)

× [S′
2, S

′′
3 , S′′

1 , L′′
1 , L′′

2 , S′
3]

1/2

[S′
1]1/2

(−1)3S′+L′+S′′+2S′
2+2S′′

1 +3S′′
3 +L+L′

1+l1+1

{
S′′

2 S′ S′
2

S′′ 1/2 S′′
3

}{
L′ L′′ L′′

2

t L′
3 L′

2

}{
t l1 l1

l1 L′′
2 L′

3

}

× (2l1 + 1)
(

l l 0
0 0 0

)(
l1 l l1

0 0 0

)∑

n0s

Rl(n0s n1l1, nln1l1)〈n0s|r−3|n2s〉10/ΔE

+ 2 δ(L′
1, L

′′) δ(L′
1, L

′
2) δ(L′′

2 , L′′
3) δ(t, l1)

(
nlNα′′

1S′′
1 L′′

1{|nlN−1α′
1S

′
1L

′
1

)
[S′′

3 , S′′, S′
2, S

′
3, L

′
3, S

′′
2 , L′′

2 , S′′
1 , L′′

1 ]1/2

× (−1)3S′′
1 +2S′+L′+3S′′

3 +S′′+2S′
2+S′

3+S′′
2 +L′

2+1

⎧
⎨

⎩

S′
2 S′

1 1/2 S′′
2

S′
3 1/2 1/2 S′′

S′ S′′
1 S′′

3 1/2

⎫
⎬

⎭

{
l L′

2 L′′

L′ L′′
2 L′

3

}{
l1 l1 l

L′′
2 L′

3 l1

}

×
√

2l1 + 1
√

2l + 1
(

l1 l1 0
0 0 0

)(
l1 l l1

0 0 0

)∑

n0s

Rl1(n0s n1l1, n1l1nl)〈n0s|r−3|n2s〉10/ΔE

]

. (17)

4.7.4 Configuration interaction nlNn1l1 ↔ nlN−1n3s n2l2

The states ψ for the nlNn1l1 configuration and ψ′ for the nlN−1n3s n2l2 configuration are defined as follows:

ψ = (n0s
2 1S, nlNα1S1L1)α1S1L1, n1l1;SL,

ψ′ = (n0s
2 1S, nlN−1α′

1S
′
1L

′
1)α

′
1S

′
1L

′
1, (n3s, n2l2)S′

2L
′
2;S

′L′.



Page 10 of 15 Eur. Phys. J. Plus (2016) 131: 429

For the excitation of an electron from a closed n0s2 shell into an empty n3s shell the perturbing virtual states are
defined as ψ′′ = (n0s

2S, nlNα′′
1S′′

1 L′′
1)S′′L′′, (n1l1, n3s)S′′

2 L′′
2 ;S′′′L′′′.

In this case the first term of the sum below is equal to zero due to hyperfine interaction:

−
∑

ψ′′ �=ψ,ψ′

[
〈ψ|G|ψ′′〉 × 〈ψ′′‖t10‖ψ′〉 + 〈ψ‖t10‖ψ′′〉 × 〈ψ′′|G|ψ′〉

]
/ΔE. (18)

The second component is as follows:

−
∑

ψ′′

〈
ψ‖t10‖ψ′′〉 × 〈ψ′′|G|ψ′〉

/
ΔE

= −
∑

ψ′′

√
N δ(α1S1L1, α

′′
1S′′

1 L′′
1) δ(L,L′) δ(L1, L

′′) [S,L, S′, S′′, S′′
2 ]1/2(−1)S′′+S′+L′+l+0.5

⎧
⎨

⎩

S′ S 1
S′′ S1 1/2
S′′

2 1/2 1/2

⎫
⎬

⎭

×
[

δ(S′
1, S

′′) δ(L′′, L′′
1) δ(S′

2, S
′′
2 )δ(L′

2, l2) δ(L′′
2 , l1)

(
nlNα′′

1S′′
1 L′′

1{|nlN−1α′
1S

′
1L

′
1

) [S′′
1 , L′′

1 ]1/2

[S′
1]1/2

{
l2 L′ L′

1

L′′ l l1

}

× (−1)2S′
1+L′

1+S′
2 δ(l, t)

√
(2l1 + 1)(2l2 + 1)

(
l l 0
0 0 0

)(
l1 l l2

0 0 0

)∑

n0s

Rl(n0s n2l2, nln1l1)〈n0s|r−3|n2s〉10/ΔE

+ δ(L′′, L′′
1) δ(L′

2, l2) δ(L′′
2 , l1) [S′

2, S
′′
1 , S′′

2 , S′′, L′′]1/2
(
nlNα′′

1S′′
1 L′′

1{|nlN−1α′
1S

′
1L

′
1

)

× (−1)2S′′
1 +S′′+S′

1+L′
1+S′

2+l2+1

{
1/2 S′′

2 1/2
S′′ S′′

1 S′

}{
S′

2 S′ S′
1

S′′
1 1/2 1/2

}{
l2 L′ L′

1

L′′ l l1

}

× δ(l1, t)
√

(2l + 1)(2l2 + 1)
(

l1 l1 0
0 0 0

)(
l l1 l2

0 0 0

)∑

n0s

Rl(n0s n2l2, n1l1nl)〈n0s|r−3|n2s〉10/ΔE

]

. (19)

4.7.5 Configuration interaction nlNn1l1 ↔ nlNn2s

The states ψ for the nlNn1l1 configuration and ψ′ for the nlNn2s configuration are defined as follows:

ψ = (n0s
2 1S, nlNα1S1L1)α1S1L1, n1l1;SL,

ψ′ = (n0s
2 1S, nlNα′

1S
′
1L

′
1)α

′
1S

′
1L

′
1, n2s;S′L′.

For the excitation of an electron from a closed n0s2 shell into an empty n2s shell the perturbing virtual states are
defined as ψ′′ = (n0s

2S, nlNα′′
1S′′

1 L′′
1)S′′L′′, (n1l1, n2s)S′′

2 L′′
2 ;S′′′L′′′.

In this case the first term of the sum below is equal to zero due to hyperfine interaction (hfs operator is acting
between electrons n0s and n1l1, radial integral 〈n0s|r−3|n1l1〉10 ≈ 0):

−
∑

ψ′′ �=ψ,ψ′

[
〈ψ|G|ψ′′〉 × 〈ψ′′‖t10‖ψ′〉 + 〈ψ‖t10‖ψ′′〉 × 〈ψ′′|G|ψ′〉

]
/ΔE. (20)

The second component is as follows:

−
∑

ψ′′

〈
ψ‖t10‖ψ′′〉 × 〈ψ′′|G|ψ′〉

/
ΔE

= −
∑

ψ′′

δ(α1S1L1, α
′′
1S′′

1 L′′
1) δ(L,L′) δ(L1, L

′′) [S,L, S′, S′′, S′′
2 ]1/2 (−1)3S′′+3S1+S+S′+1.5

⎧
⎨

⎩

1/2 1/2 1
1/2 S1 S

S′′
2 S′′ S′

⎫
⎬

⎭

×
[
∑

ᾱS̄L̄

N δ(L′′, L′′
1) δ(S̄, S′′)

(
nlNα′′

1S′′
1 L′′

1{|nlN−1ᾱS̄L̄
) (

nlNα′
1S

′
1L

′
1{|nlN−1ᾱS̄L̄

)

× (−1)2S′
1+3S′′+S′+L̄+L′

1+l+1 [S′
1, S

′′
1 , S′′

2 , L′′]1/2

[S′′]1/2

{
L̄ l L′′

l1 L′
1 l

}{
1/2 S′ S′

1

S′′ 1/2 S′′
2

}
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× δ(l, t)
√

(2l + 1)(2l1 + 1)
(

l l 0
0 0 0

)(
l1 l l

0 0 0

)∑

n0s

Rl(n0s nl, nln1l1)〈n0s|r−3|n2s〉10/ΔE

+
∑

ᾱS̄L̄

N δ(L′′, L′′
1) δ(S′

1, S
′′
1 )

(
nlNα′′

1S′′
1 L′′

1{|nlN−1ᾱS̄L̄
) (

nlNα′
1S

′
1L

′
1{|nlN−1ᾱS̄L̄

)

× (−1)2S′
1+3S′′+S′+L̄+L′

1 [S′′
2 , S′′, L′′]1/2

{
L̄ l L′′

l1 L′
1 l

}{
1/2 S′ S′

1

S′′ 1/2 S′′
2

}

× δ(l1, t) (2l + 1)
(

l l1 l

0 0 0

)(
l1 l1 0
0 0 0

)∑

n0s

Rl1(n0s nl, n1l1nl)〈n0s|r−3|n2s〉10/ΔE

]

. (21)

4.7.6 Configuration interaction nlNn1s ↔ nlNn2l2

The states ψ for the nlNn1s configuration and ψ′ for the nlNn2s configuration are defined as follows:

ψ = (n0s
2 1S, nlNα1S1L1)α1S1L1, n1s;SL,

ψ′ = (n0s
2 1S, nlNα′

1S
′
1L

′
1)α

′
1S

′
1L

′
1, n2l2;S′L′.

For the excitation of an electron from a closed n0s2 shell into an empty n1s shell the perturbing virtual states are
defined as ψ′′ = (n0s

2S, nlNα′′
1S′′

1 L′′
1)S′′L′′, (n2l2, n1s)S′′

2 L′′
2 ;S′′′L′′′.

In this case the second term of the sum below is equal to zero due to hyperfine interaction (hfs operator is acting
between electrons n0s and n2l2, radial integral 〈n0s|r−3|n2l2〉10 ≈ 0):

−
∑

ψ′′ �=ψ,ψ′

[
〈ψ|G|ψ′′〉 × 〈ψ′′‖t10‖ψ′〉 + 〈ψ‖t10‖ψ′′〉 × 〈ψ′′|G|ψ′〉

]
/ΔE. (22)

The first component is as follows:

−
∑

ψ′′

〈
ψ|G|ψ′′〉 × 〈ψ′′‖t10‖ψ′〉

/
ΔE

= −
∑

ψ′′

δ(α′
1S

′
1L

′
1, α

′′
1S′′

1 L′′
1) δ(L,L′) δ(L′

1, L
′′) [S,L, S′, S′′, S′′

2 ]1/2 (−1)3S′′+3S′
1+2S+1.5

⎧
⎨

⎩

1/2 1/2 1
1/2 S′

1 S′

S′′
2 S′′ S

⎫
⎬

⎭

×
[
∑

ᾱS̄L̄

N δ(L′′, L′′
1) δ(S̄, S′′)

(
nlNα′′

1S′′
1 L′′

1{|nlN−1ᾱS̄L̄
) (

nlNα1S1L1{|nlN−1ᾱS̄L̄
)

× (−1)2S1+3S′′+S+L̄+L1+1 [S1, S
′′
1 , S′′

2 , L′′]1/2

[S′′]1/2

{
L̄ l L′′

l2 L1 l

}{
1/2 S S1

S′′ 1/2 S′′
2

}

× δ(l, t)
√

(2l + 1)(2l2 + 1)
(

l l 0
0 0 0

)(
l l l2

0 0 0

)∑

n0s

Rl(n0s nl, nln2l2)〈n0s|r−3|n1s〉10/ΔE

+
∑

ᾱS̄L̄

N δ(L′′, L′′
1) δ(S1, S

′′
1 )

(
nlNα′′

1S′′
1 L′′

1{|nlN−1ᾱS̄L̄
) (

nlNα1S1L1{|nlN−1ᾱS̄L̄
)

× (−1)2S1+3S′′+S+L̄+L1 [S′′
2 , S′′, L′′]1/2

{
L̄ l L′′

l2 L1 l

}{
1/2 S S1

S′′ 1/2 S′′
2

}

× δ(l2, t) (2l + 1)
(

l l2 l

0 0 0

)(
l2 l2 0
0 0 0

)∑

n0s

Rl2(n0s nl, n2l2nl)〈n0s|r−3|n1s〉10/ΔE

]

. (23)

4.7.7 Configuration interaction nlNn1l1n2l2 ↔ nlNn3s n2l2

The states ψ for the nlNn1l1n2l2 configuration and ψ′ for the nlNn3s n2l2 configuration are defined as follows:

ψ = (n0s
2 1S, nlNα1S1L1)α1S1L1, (n1l1, n2l2)S2L2;SL,

ψ′ = (n0s
2 1S, nlNα′

1S
′
1L

′
1)α

′
1S

′
1L

′
1, (n3s, n2l2)S′

2L
′
2;S

′L′.
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For the excitation of an electron from a closed n0s2 shell into an empty n3s shell the perturbing virtual states are
defined as ψ′′ = [(n0s

2S, nlNα′′
1S′′

1 L′′
1)S′′L′′, (n1l1, n2l2)S′′

2 L′′
2 ]S′′

3 L′′
3 , n3s;S′′′L′′′.

In this case the first term of the sum below is equal to zero due to hyperfine interaction:

−
∑

ψ′′ �=ψ,ψ′

[
〈ψ|G|ψ′′〉 × 〈ψ′′‖t10‖ψ′〉 + 〈ψ‖t10‖ψ′′〉 × 〈ψ′′|G|ψ′〉

]
/ΔE. (24)

The second component is as follows:

−
∑

ψ′′

〈
ψ‖t10‖ψ′′〉 × 〈ψ′′|G|ψ′〉

/
ΔE

= −
∑

ψ′′

δ(α1S1L1, α
′′
1S′′

1 L′′
1) δ(α′

1S
′
1L

′
1, α

′′
1S′′

1 L′′
1) δ(S2L2, S

′′
2 L′′

2) δ(L,L′) δ(L1, L
′′)

× δ(L,L′′
3) δ(L′′, L′

1) δ(L′, L′′
3) δ(L′

2, l2) δ(L′′
2 , l2) [S,L, S′, S2, S

′
2]

1/2 [S′′, S′′
3 ]

× (−1)S+S′+L′+3S1+3S′
1+S2+S′

2+3S′′+S′′
3 +L′

1

{
1/2 S′′ S1

S2 S S′′
3

}{
S S′ 1

1/2 1/2 S′′
3

}{
1/2 S′

2 1/2
S′ S′′

3 S′
1

}{
1/2 S′

1 S′′

S′′
3 S′′

2 1/2

}

×
[

δ(l1, t)
√

2l2 + 1
(

l1 l1 0
0 0 0

)(
l2 l1 l2

0 0 0

)∑

n0s

Rl1(n0s n2l2, n1l1n2l2)〈n0s|r−3|n2s〉10/ΔE

+ δ(l2, t) (−1)S2+l2
√

2l1 + 1
(

l1 l2 l2

0 0 0

)(
l2 l2 0
0 0 0

)∑

n0s

Rl2(n0s n2l2, n2l2n1l1)〈n0s|r−3|n2s〉10/ΔE

]

. (25)

4.7.8 Configuration interaction nlNn1l
N1
1 ↔ nlNn1l

N1−1
1 n2s

The states ψ for the nlNn1l
N1
1 configuration and ψ′ for the nlNn1l

N1−1
1 n2s configuration are defined as follows:

ψ = (n0s
2 1S, nlNα1S1L1)α1S1L1, n1l

N1
1 α2S2L2;SL,

ψ′ = (n0s
2 1S, nlNα′

1S
′
1L

′
1)α

′
1S

′
1L

′
1, (n1l

N1−1
1 α′

2S
′
2L

′
2, n2s)S′

3L
′
3;S

′L′.

For the excitation of an electron from a closed n0s2 shell into an empty n2s shell the perturbing virtual states are
defined as ψ′′ = (n0s

2S, nlNα′′
1S′′

1 L′′
1)S′′L′′, (n1l

N1
1 α′′

2S′′
2 L′′

2 , n2s)S′′
3 L′′

3 ;S′′′L′′′.
In this case the first term of the sum below is equal to zero due to hyperfine interaction:

−
∑

ψ′′ �=ψ,ψ′

[
〈ψ|G|ψ′′〉 × 〈ψ′′‖t10‖ψ′〉 + 〈ψ‖t10‖ψ′′〉 × 〈ψ′′|G|ψ′〉

]
/ΔE. (26)

The second component is as follows:

−
∑

ψ′′

〈
ψ‖t10‖ψ′′〉 × 〈ψ′′|G|ψ′〉

/
ΔE

= −
∑

ψ′′

δ(α1S1L1, α
′′
1S′′

1 L′′
1) δ(α′

1S
′
1L

′
1, α

′′
1S′′

1 L′′
1) δ(α2S2L2, α

′′
2S′′

2 L′′
2) δ(L,L′) δ(L1, L

′′) δ(L′′
2 , L′′

3)

× δ(L′
1, L

′′) δ(L′
3, L

′′
3) δ(L′

3, L
′′
2) δ(L′

2, L
′′
2) δ(l1, t) [S′′, S′′

3 ]
[S,L, S′, S′

3, S2]1/2

[L′
2]1/2

× (−1)2S′′+3S1+S2+2S′
1+2S′

2+S′
3+S′′

3 +S+2S′+1.5

⎧
⎨

⎩

1/2 1/2 1
S2 S1 S

S′′
3 S′′ S′

⎫
⎬

⎭

{
S′′ 1/2 S′

1

S′
3 S′ S′′

3

}{
1/2 S′′

3 S′′
2

1/2 S′
2 S′

3

}

×
∑

ᾱ2S̄2L̄2

√
N1 δ(S̄2, S

′
2)
(
n1l

N1
1 α′′

2S′′
2 L′′

2{|n1l
N1−1
1 ᾱ2S̄2L̄2

) 〈
n1l

N1−1
1 ᾱ2S̄2L̄2

∥
∥Ul1

∥
∥n1l

N1−1
1 α′

2S
′
2L

′
2

〉

× (2l1 + 1)
(

l1 l1 l1

0 0 0

)(
l1 l1 0
0 0 0

)∑

n0s

Rl1(n0s n1l1, n1l1n1l1)〈n0s|r−3|n2s〉10/ΔE. (27)
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4.7.9 Configuration interaction nlNn1l1n2s
2 ↔ nlNn1l

2
1 n2s

The states ψ for the nlNn1l1n2s
2 configuration and ψ′ for the nlNn1l

2
1 n2s configuration are defined as follows:

ψ = (n0s
2 1S, (nlNα1S1L1, n1l1)S2L2)S2L2, n2s

2 1S;SL,

ψ′ = (n0s
2 1S, nlNα′

1S
′
1L

′
1)α

′
1S

′
1L

′
1, (n1l

2
1 α′

2S
′
2L

′
2, n2s)S′

3L
′
3;S

′L′.

For the excitation of an electron from a closed n0s2 shell into an open n1l1 shell the perturbing virtual states are
defined as ψ′′ = [n0s

2S, (nlNα′′
1S′′

1 L′′
1 , n1l

2
1α

′′
2S′′

2 L′′
2)S′′

4 L′′
4 ]S′′L′′, n0s

2 1S;S′′′L′′′.
In this case the second term of the sum below is equal to zero due to hyperfine interaction:

−
∑

ψ′′ �=ψ,ψ′

[
〈ψ|G|ψ′′〉 × 〈ψ′′‖t10‖ψ′〉 + 〈ψ‖t10‖ψ′′〉 × 〈ψ′′|G|ψ′〉

]
/ΔE. (28)

The first component is as follows:

−
∑

ψ′′

〈
ψ|G|ψ′′〉 × 〈ψ′′‖t10‖ψ′〉

/
ΔE

= −
∑

ψ′′

√
2 δ(α1S1L1, α

′′
1S′′

1 L′′
1) δ(α′

1S
′
1L

′
1, α

′′
1S′′

1 L′′
1) δ(S2L2, S

′′L′′) δ(SL, S′′L′′) δ(α′
2S

′
2L

′
2, α

′′
2S′′

2 L′′
2) δ(L′′

4 , L′′)

× δ(L′
2, L

′
3) δ(l1, t) [S′′

4 ] [S,L, S′, S′
2, L

′
2, S

′
3]

1/2(−1)S′′
4 +S1+S′

1+2S2+2S′
2+L+S′+L′+L′

2+l1+3/2

{
1/2 S2 S′′

4

S1 S′
2 1/2

}

×
{

S S′ 1
1/2 1/2 S′′

4

}{
S′ 1/2 S′′

4

S′
2 S′

1 S′
3

}(
l1 l1 l1

0 0 0

)(
l1 l1 0
0 0 0

)∑

n0s

Rl1(n0s n1l1, n1l1n1l1)〈n0s|r−3|n2s〉10/ΔE. (29)

5 Results

In order to show the effectiveness of our method to a greater extent than was previously presented [30, 47, 48], we
decided to choose lanthanum, as an atom with a complex structure and with a huge amount of experimental data
concerning energy levels and hyperfine structure constants. Currently the La level list contains circa 430 even La I
levels, all of them with known hyperfine constants A (in many cases also B constants are known). This allows an
excellent test confirming the correctness of our method and mathematical formulae.

For the study of La, we considered the system of 100 even configurations:

4f25d + 4f26s + 4f5d5f + 4f5f6s +
12∑

n′=6

4f5dn′p +
12∑

n′=6

4f6sn′p + 5d3 +
15∑

n′=6

5d2n′s +
15∑

n′=6

5d2n′d

+
14∑

n′=5

5d2n′g + 5d6s2 +
15∑

n′=7

5d6sn′s +
15∑

n′=6

5d6sn′d +
14∑

n′=5

5d6sn′g + 5d6p2 + 6s6p2 +
15∑

n′=7

6s2n′s +
15∑

n′=6

6s2n′d.

In our procedure we use all the experimental data known so far. A good agreement between experimental and
calculated values of energy and hyperfine structure constants was achieved. The energy values and hfs constants for
the levels up to approximately 45000 cm−1 were also predicted. Details of the analysis will be presented separately.

The examples of preliminary results of the semi-empirical fine and hyperfine structure analysis for La I are shown
in table 1. The first two columns contain experimental and calculated level energies, respectively. In the subsequent
four columns, the strongest and second strongest fine structure components with the corresponding percentages are
presented. The comparison of calculated and experimental gJ values is presented in columns seven and eight. The
experimental hyperfine constants A are listed together with their experimental uncertainty in column nine. The
calculated A constants for all levels are given in column ten.

6 Conclusions

The present work on the hyperfine structure core-polarization effect is complementary to the previous five parts,
that together describe all possible contributions originating from the second-order of the perturbation theory to the
structure of complex atom.
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Table 1. Comparison of the experimental and calculated energy values [cm−1] and hfs A constants [MHz] for La I.

Eexp Ecalc % Main comp. % Sec. comp. gJcalc gJexp Aexp Acalc

J = 7/2

3494.525 3507 96.21 5d2(3F)6s 4F 0.61 4f 5d6p (3D) 4F 1.238 1.237 462.868 (0.001) 457

8052.163 8056 86.48 5d2(3F)6s 2F 4.94 5d3 2F 1.135 1.135 −197.064 (0.005) −195

9960.904 9969 80.16 5d2(1G)6s 2G 9.13 5d3 2G 0.898 0.892 −292.267 (0.005) −305

13238.331 13241 97.26 5d3 4F 0.68 4f2(3F)5d 4F 1.236 1.228 −19.103 (0.005) −18

17023.342 17028 86.22 5d3 2G 8.48 5d2(1G)6s 2G 0.892 0.880 162.3 (2.5) 151

21943.811 21937 86.21 5d3 2F 5.01 5d2(3F)6s 2F 1.142 58 (37) 44

29045.820 29060 47.39 4f 6s6p (3P) 2F 24.95 4f 6s6p (3P) 4F 1.153 1.150 801.5 (0.5) 811

30055.037 30056 36.77 4f 6s6p (3P) 4F 22.00 5d2(3F)7s 4F 1.173 1.190 374.9 (2.0) 349

30401.704 30409 60.54 4f 6s6p (3P) 4G 18.73 4f 6s6p (3P) 2F 1.040 1.030 365.3 (0.5) 303

31059.702 31082 56.97 5d2(3F)7s 4F 17.50 4f 6s6p (3P) 4F 1.235 1.220 210 (1) 214

31287.605 31320 88.65 5d 6s7s (3S) 4D 2.65 5d2(3F)6d 4D 1.419 1.410 805 (1) 812

31924.993 31873 47.72 4f 6s6p (3P) 4D 29.36 4f 6s6p (3P) 2G 1.227 1.270 513 (2) 501

32108.512 32113 67.84 5d2(3F)7s 2F 9.21 5d2(3F)7s 4F 1.141 1.130 −75 (5) −58

32219.536 32199 42.45 4f 6s6p (3P) 2G 23.07 4f 6s6p (3P) 4D 1.100 1.060 160 (2) 191

33286.519 33268 41.31 5d2(3F)6d 4H 16.57 5d2(1D)6d 2G 0.801 0.780 283 (1) 247

33756.460 33698 49.98 5d2(3F)6d 4G 13.51 5d2(3F)6d 2G 0.994 0.990 167 (1) 191

. . .

J = 9/2

4121.572 4143 96.33 5d2(3F)6s 4F 0.62 4f 5d6p (3D) 4F 1.333 1.333 489.534 (0.001) 495

9919.826 9914 83.65 5d2(1G)6s 2G 8.17 5d3 2G 1.113 1.107 559.812 (0.005) 567

13747.276 13731 95.50 5d3 4F 1.96 5d3 2G 1.328 −63.829 (0.005) −67

17140.940 17144 53.84 5d3 2G 34.83 5d3 2H 1.041 108.1 (5.3) 119

18315.822 18334 60.19 5d3 2H 32.56 5d3 2G 0.985 0.970 111.6 (2.6) 124

30409.369 30442 65.91 4f 6s6p (3P) 4F 19.55 5d2(3F)7s 4F 1.322 584 (5) 566

30934.760 30931 73.55 4f 6s6p (3P) 4G 10.72 4f 6s6p (3P) 2G 1.166 1.158 605 (10) 630

31923.960 31870 73.97 5d2(3F)7s 4F 13.71 4f 6s6p (3P) 4F 1.320 1.340 72 (5) 93

32448.352 32446 69.82 4f 6s6p (3P) 2G 8.24 4f 6s6p (3P) 4G 1.141 360 (3) 376

33753.424 33696 41.59 5d2(3F)6d 4H 14.81 5d2(1D)6d 2G 1.037 1.020 163 (2) 150

34526.709 34534 57.91 5d2(3F)6d 4G 9.39 5d2(3F)6d 2G 1.153 48 (1) 37

34635.015 34646 40.65 5d2(3F)6d 4H 15.21 5d2(1D)6d 2G 1.062 1.070 253.0 (2) 235

. . .

We proved that it is possible to determine quantitatively the contributions of each interactions, and specify the
precise definition of the evaluated parameters describing the interactions in the atom.

Our analyses clearly demonstrate that precise interpretation of the hyperfine structure is impossible without taking
into account new parameters describing the contribution from electrostatic coupling with distance configurations,
introduced in current work.

Presentation of precise definition of the parameters and explicit mathematical formulae allows to compare our
approach with other theoretical methods of the description of atomic structure.
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