Skip to main content
Log in

Gauss-Bonnet dark energy Chaplygin gas model

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The correspondence of the Gauss-Bonnet (GB) model and its modified (MGB) model of dark energy with the standard and generalized Chaplygin gas-scalar field models (SCG and GCG) have been studied in a flat universe. The exact solution of potentials and scalar fields, which describe the accelerated expansion of the universe, are reconstructed. According to the evolutionary behavior of the GB and MGB models, the same form of dynamics of scalar field and potential for different SCG and GCG models are derived. By calculating the squared sound speed of the MGB, GB model as well as the SCG, GCG, and investigating the GB-Chaplygin gas from the viewpoint of linear perturbation theory, we find that the best results, which are consistent with the observation, may appear by considering MGB-GCG. Also, we find out some bounds for parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A.G. Riess et al., Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  2. S. Perlmutter et al., Nature 391, 51 (1998)

    Article  ADS  Google Scholar 

  3. M. Hicken et al., Astrophys. J. 700, 1097 (2009)

    Article  ADS  Google Scholar 

  4. M. Tegmark et al., Astrophys. J. 606, 702 (2004)

    Article  ADS  Google Scholar 

  5. SDSS Collaboration (K. Abazajian et al.), Astron. J. 129, 1755 (2005)

    Article  Google Scholar 

  6. D.N. Spergel et al., Astrophys. J. Suppl. 148, 175 (2003)

    Article  ADS  Google Scholar 

  7. WMAP Collaboration (E. Komatsu et al.), Astrophys. J. Suppl. 180, 330 (2009)

    Article  Google Scholar 

  8. S. Nojiri, S.D. odintsov, Int. J. Geom. Methods Mod. Phys. 4, 115 (2007)

    Article  MathSciNet  Google Scholar 

  9. I. Martino, M. Laurentis, S. Capozziello, Universe 1, 199 (2015)

    Article  Google Scholar 

  10. S. Capozziello et al., Universe 1, 199 (2015)

    Article  ADS  Google Scholar 

  11. S. Bahamonde, C.G. Böhmer, F.S.N. Lobo, D. Sáez-Gómez, Universe 1, 186 (2015)

    Article  ADS  Google Scholar 

  12. S. Basilakos, N.E. Mavromatos, J. Solà, Universe 2, 14 (2016)

    Article  ADS  Google Scholar 

  13. L. Iorio et al., Phys. Dark Univ. 13, 111 (2016)

    Article  Google Scholar 

  14. Lorenzo Iorio, Ninfa Radicella, Matteo Luca Ruggiero, JCAP 08, 21 (2015)

    Article  Google Scholar 

  15. K. Rezazadeh, A. Abdolmaleki, K. Karami, JHEP 01, 131 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  16. K. Karami, A. Abdolmaleki, S. Asadzadeh, Z. Safari, Eur. Phys. J. C 73, 2565 (2013)

    Article  ADS  Google Scholar 

  17. A. Khodam-Mohammadi, P. Majari, M. Malekjani, Astrophys. Space Sci. 331, 673 (2011)

    Article  ADS  Google Scholar 

  18. A. De Felice, S. Tsujikawa, Living Rev. Relativ. 13, 3 (2010)

    Article  ADS  Google Scholar 

  19. T.P. Sotiriou, V. Faraoni, Rev. Mod. Phys. 82, 451 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  20. A. Zanzi, Universe 1, 446 (2015)

    Article  ADS  Google Scholar 

  21. Yi-Fu Cai, S. Capozziello, M. De Laurentis, E.N. Saridakis, Rep. Prog. Phys. 79, 106901 (2016)

    Article  ADS  Google Scholar 

  22. P.H. Chavanis, Universe 1, 357 (2015)

    Article  ADS  Google Scholar 

  23. A. Gomez-Valent et al., JCAP 01, 004 (2015)

    Article  ADS  Google Scholar 

  24. A. Gomez-Valent et al., Mon. Not. R. Astron. Soc. 448, 2810 (2015)

    Article  ADS  Google Scholar 

  25. J.A.S. Lima, S. Basilakos, J. Solà, Mon. Not. R. Astron. Soc. 431, 923 (2013)

    Article  ADS  Google Scholar 

  26. E.L.D. Perico, J.A.S. Lima, S. Basilakos, J. Sola, Phys. Rev. D 88, 063531 (2013)

    Article  ADS  Google Scholar 

  27. S. Basilakos, J.A.S. Lima, J. Sola, Int. J. Mod. Phys. D 22, 1342008 (2013)

    Article  ADS  Google Scholar 

  28. L.E. Bleem et al., Astrophys. J. 216, 27 (2015)

    Article  Google Scholar 

  29. J.A.S. Lima, M. Trodden, Phys. Rev. D 53, 4280 (1996)

    Article  ADS  Google Scholar 

  30. L.N. Granda, Mod. Phys. Lett. A 28, 1350117 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  31. G. Kofinas, R. Maartens, E. Papantonopoulos, JHEP 10, 066 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  32. R.A. Brown, R. Maartens, E. Papantonopoulos, V. Zamarias, JCAP 11, 008 (2005)

    Article  ADS  Google Scholar 

  33. S. Nojiri, S.D. Odintsov, M. Sasaki, Phys. Rev. D 71, 123509 (2005)

    Article  ADS  Google Scholar 

  34. S. Chaplygin, Sci. Mem. Moscow Univ. Math. Phys. 21, 1 (1904)

    Google Scholar 

  35. A.Y. Kamenshchik, U. Moschella, V. Pasquier, Phys. Lett. B 511, 265 (2001)

    Article  ADS  Google Scholar 

  36. M.C. Bento, O. Bertolami, A.A. Sen, Phys. Rev. D 66, 043507 (2002)

    Article  ADS  Google Scholar 

  37. V. Gorini, A. Kamenshchik, U. Moschella, V. Pasquier

  38. Z.H. Zhu, Astron. Astrophys. 423, 421 (2004)

    Article  ADS  Google Scholar 

  39. M.C. Bento, O. Bertolami, A.A. Sen, Phys. Lett. B 575, 172 (2003)

    Article  ADS  Google Scholar 

  40. N. Bilic, G.B.Tupper, R.D. Viollier, Phys. Lett. B 535, 17 (2001)

    Article  ADS  Google Scholar 

  41. U. Debnath, A. Banerjee, S. Chakraborty, Class. Quantum Grav. 21, 5609 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  42. R.A. Brown, Gen. Relativ. Gravit. 39, 477 (2007)

    Article  ADS  Google Scholar 

  43. R.G. Cai, H.S. Zhang, A. Wang, Commun. Theor. Phys. 44, 948 (2005)

    Article  ADS  Google Scholar 

  44. S. Nojiri, S.D. Odintsov, S. Ogushi, Int. J. Mod. Phy. A 17, 4809 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  45. M. Malekjani, A. Khodam-mohammadi, Int. J. Mod. Phys. D 20, 281 (2011)

    Article  ADS  Google Scholar 

  46. M.C. Bento, O. Bertolami, A.A. Sen, Phys. Rev. D 70, 083519 (2004)

    Article  ADS  Google Scholar 

  47. P.J.E. Peebles, B. Ratra, Rev. Mod. Phys. 75, 559 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  48. D. Pavon et al., Phys. Rev. D 86, 083509 (2012)

    Article  ADS  Google Scholar 

  49. A. Khodam-mohammadi, E. Karimkhani, Int. J. Mod. Phys. D 23, 1450081 (2014)

    Article  ADS  Google Scholar 

  50. R.A. Daly et al., Astrophys. J. 677, 1 (2008)

    Article  ADS  Google Scholar 

  51. P.J. Steinhardt et al., Phys. Rev. D 59, 123504 (1999)

    Article  ADS  Google Scholar 

  52. J. Yoo, Y. Watanabe, Int. J. Mod. Phys. D 21, 1230002 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Khodam-Mohammadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodam-Mohammadi, A., Karimkhani, E. & Alaei, A. Gauss-Bonnet dark energy Chaplygin gas model. Eur. Phys. J. Plus 131, 398 (2016). https://doi.org/10.1140/epjp/i2016-16398-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16398-5

Navigation